Efficient Methods for

Continuous and Discrete
Shape Analysis

Dissertation

zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultat
der
Rheinischen Friedrich-Wilhelms-Universitat Bonn

vorgelegt von
Dipl.-Math. Frank R. Schmidt
aus Bonn

Bonn, 2010



Angefertigt mit Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultat
der Rheinischen Friedrich-Wilhelms-Universitat Bonn

1. Gutachter: Prof. Dr. D. Cremers
2. Gutachter: Prof. Dr. M. Clausen

Tag der Promotion: 12. November 2010

ii



Summary

When interpreting an image of a given object, humans are able to
abstract from the presented color information in order to really see
the presented object. This abstraction is also known as shape. The
concept of shape is not defined exactly in Computer Vision and in
this work, we use three different forms of these definitions in order
to acquire and analyze shapes. This work is devoted to improve
the efficiency of methods that solve important applications of shape
analysis.

The most important problem in order to analyze shapes is the prob-
lem of shape acquisition. To simplify this very challenging prob-
lem, numerous researchers have incorporated prior knowledge into
the acquisition of shapes. We will present the first approach to ac-
quire shapes given a certain shape knowledge that computes always
the global minimum of the involved functional which incorporates
a Mumford-Shah like functional with a certain class of shape priors
including statistic shape prior and dynamical shape prior.

In order to analyze shapes, it is not only important to acquire shapes,
but also to classify shapes. In this work, we follow the concept of
defining a distance function that measures the dissimilarity of two
given shapes. There are two different ways of obtaining such a dis-
tance function that we address in this work. Firstly, we model the
set of all shapes as a metric space induced by the shortest path on
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an orbifold. The shortest path will provide us with a shape morph-
ing, i.e., a continuous transformation from one shape into another.
Secondly, we address the problem of shape matching that finds corre-
sponding points on two shapes with respect to a preselected feature.

Our main contribution for the problem of shape morphing lies in
the immense acceleration of the morphing computation. Instead of
solving partial resp. ordinary differential equations, we are able to
solve this problem via a gradient descent approach that subsequently
shortens the length of a path on the given manifold. During our run-
time test, we observed a run-time acceleration of up to a factor of
1000.

Shape matching is a classical discrete problem. If each shape is dis-
cretized by N shape points, most Computer Vision methods needed
a cubic run-time. We will provide two approaches how to reduce
this worst-case complexity to O(N?log(N)). One approach exploits
the planarity of the involved graph in order to efficiently compute N
shortest path in a graph of O(IN?) vertices. The other approach com-
putes a minimal cut in a planar graph in O(N log(N)). In order to
make this approach applicable to shape matching, we improved the
run-time of a recently developed graph cut approach by an empirical
factor of 2—4.
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Chapter 1

Introduction

1.1 Shapes

Describing, measuring and comparing the shape of objects is very
popular in a variety of different disciplines. Even one of the first doc-
umented form of human communication, namely the cave paintings
during the stone age, reduced the described objects to a monochro-
matic shape!. Since then, humans strove to improve the visualization
of the objects that they encountered. But even in modern society,
the shape representation in form of a paper-cutting is still present. It
reflects the fact that every person is able to recognize a given object
even if color information is completely ignored. In fact, it has been
believed that all relevant features of a given object are encoded by
its shape. If we want to teach a computer not only to register but
to truly see and interpret the world, Shape Analysis is an important
task. In this work, we will discuss different aspects of Shape Analysis
and present methods that to our knowledge are among the fastest in

1The cave painting image and the paper-cutting image of Figure 1.1 are taken
from wikipedia.org and have been released to the public domain.



Figure 1.1: Shapes and human perception. Humans have al-
ways used shapes to describe their environment. Left: Cave drawing
of the Stone Age. Middle: Paper-cutting from the silhouette of Jo-
hann Wolfgang von Goethe from the late 18th century. Right: Shape
of the MPEGT-database.

these different application areas.

Before analyzing different shapes, we have to acquire a shape from a
given image. This means, we have to distinguish a displayed object
from its surroundings. In other words, we like to assign to every
point = of the image domain 2 C R? a binary value ¢(z) telling
whether the point x is part of the object (¢(x) = 1) or whether it is
part of the background (¢(x) = 0)). This binary labeling problem is
also known as image segmentation because we segment an image into
its semantical components. At the end of this segmentation process,
we obtain the shape of a given object. Hence, every shape can be
equivalently represented by either a mapping ¢: Q — {0,1} or by a
subset S of the image domain €.

In this work, we assume that the set S C 2 that represents a shape
fulfills certain regularity conditions. Therefore, we assume that a
shape can be represented by an open, connected subset S of a com-
pact image domain €2 such that the boundary 05 is a smooth one-
dimensional manifold. Every such set S can therefore be represented
as a collection of closed contours {cp,...,c,}. Furthermore, we as-
sume that ¢y represents the outer contour of the subset S. Most



Figure 1.2: Shapes representation. A general shape (left) can
be represented as multiple contours (second from the left). Out of
simplicity, we will often only use the outer contour which is the
most descriptive one (second from the right). Therefore, in fact a
simplified shape is considered (right).

of the approaches, that we will present in this work, are focused on
this outer contour. The other contours ¢y, ..., ¢, have either a small
contribution to the methods or are merely ignored. This is due to
the observation that for most objects, the outer contour is the most
descriptive one (cf. Figure 1.2).

Note that even the discussed representation is not unique in the sense
that the shape of an object will not change if we move, rotate or scale
the given object. Depending on the given application, we will there-
fore introduce a group operation on the set of shape representations.
A shape will then be described as the equivalence class of a shape
representation with respect to the predefined group operation.

One goal of this work is it to describe shapes in a way that the set of
all different shapes forms a space equipped with a distance function.
This means we have to define a function that measures the similarity
of two given shapes. A value close to zero would imply that the two
given shapes are very similar to one another. On the other hand,
large distances should imply that the two given shapes are easy to
distinguish and therefore, they are very dissimilar to one another.
The concept of measuring the similarity of two different shapes ap-



pears in every chapter of this work and influences the meaning of
shape similarity.

1.2 Continuous versus Discrete Methods

In this work, we will only address problems that can be formulated
by means of optimizing a given cost functional. This formulation
can be given as a continuous functional or a discrete function. As a
consequence, contours can either be represented in a continuous or a
discrete sense. In fact, there are certain problems that can be han-
dled more efficiently if we choose a continuous representation. But
there are also problems that benefit from a discrete representation.

Continuous representations of contours can either be explicit or im-
plicit. The implicit representation of a contour consists of a differ-
entiable mapping?

p:2—R

that assigns a real value to every point of the image domain €. The
contour is then defined by all points x € € to which ¢ assigns the
value zero:

C = {x € Qp(x) = 0}

Especially for image segmentation, this representation comes in very
handy. But for other problems, explicit representations are much
easier to handle. The explicit representation of a continuous contour
is given as a differentiable mapping

c: 8" =0

that assigns a point of the image domain €) to every point of the
parameterizing circle $'. Therefore the contour C' C € is given as
the image of the mapping c.

2 Usually, we assume differentiability in a weak sense.



Discrete representations are generally given as a set of landmarks
{Cy,...,Cy_1}. In this work, we focus on a representation where
not only the landmarks but also an ordering of the landmarks is
given. Therefore, a discrete, explicit contour is given as an n-tuple

C = (Co,...,Ch1) €Q"

Implicit representations can also be used for discrete contours. In
fact, every method that is implemented on a computer can only
handle a finite number of parameters to represent a contour. The
difference between continuous and discrete methods lies in fact in
the moment of discretization:

Continuous methods In a continuous framework, the given prob-
lem is analyzed in a continuous context and thus, also the
proposed method uses continuous operations like differential
or integral operators. Only during the implementation a dis-
cretization is used.

Discrete methods In a discrete framework, we assume that we
have to deal with data that is given in a discrete manner. This
discrete data is then handled in a discrete sense. Instead of dif-
ferential operators, graph theoretical approaches are normally
used.

The advantages of minimizing a continuous cost functional are there-
fore:

e The developed method is formulated in a very general frame-
work. Therefore, the results that are obtained for finer dis-
cretization converge towards the solution of the continuous
framework. Therefore, discretization artefacts will be reduced
by increasing the discretization size.



e Since the cost function that we like to minimize is given as a
continuous, differentiable function, properties such as convex-
ity can easily be studied. As a consequence, we can rule out
local minima for convex functions even if we only minimize
these functions via a gradient descent approach.

On the other hand, discrete methods have the following advantages:

e The runtime complexity can be given in the size of the input
data. Therefore, we can estimate the maximum amount of time
that the method consumes before providing a result.

e We always know that the minimum of a cost function over a
finite set is taken by at least one element of this finite set.
Therefore, the method will always terminate. Besides, we do
not have to handle any form of numerical instabilities.

Overall, both discrete and continuous methods have their benefits.
In this work, we always use the appropriate approach to solve a given
problem as efficiently as possible.

1.3 Related Work

The study of shapes goes back several centuries. Even before the
existence of digital images or even computers, there have been studies
about shapes. Galilei [37] studied how the shape of an animal’s
bone reflects the size of the animal. His observation was that the
bones do not only scale with the size of the animal, but that the
shape of the bones changes. The similarity of shapes was studied
in the early 20th century by Thompson [91]. He studied non-rigid
body transformations to transform for example the shape of one fish
(Diodon) into another (Orthagoriscus). This technique has been
refined by Bookstein and Kendall [49, 7, 8]. For a more detailed



review, we refer to [32]. Recently, shapes have not merely been
modeled as a set of points, but as a continuous closed line in the real
plane. Younes, Mumford and Faugeras et al. worked on region based
shape warping to measure the similarity of shapes [101, 20, 64, 86].
Besides a region based representation, one can also represent a shape
as a closed contour. The concept of Shape Morphing for this kind
of shapes has been studied by Younes, Mumford and Michor [66, 67,
102] as well as Klassen et al. [51, 50].

The computationally less expensive problem of Shape Matching has
a long history in Computer Science and was originally influenced by
the string matching method of Wagner and Fischer [97]. In addition
to finding an optimal matching between two given strings, they also
studied the induced distance function. This concept has first been
applied to shape matching by McConnell et al. [65] and has since
then become the core element of most shape matching methods [3,
38, 5, 100].

Besides the problem of shape morphing and shape matching, a cen-
tral problem of Computer Vision has been the one of shape acqui-
sition. Here, the problem of obtaining an object’s shape from a
given image is to be solved. This problem is either known as image
segmentation or shape denoising. A brief review of classical segmen-
tation approaches is presented in the beginning of Chapter 2 with a
particular focus on those methods that can be formulated as an en-
ergy minimization process. The principle of introducing prior shape
knowledge into Image Segmentation has been studied by several re-
searchers [103, 42, 23, 58]. The focus of our work is set to the work
by Cremers [24, 25]. The idea of formulating Image Segmentation
and Shape Denoising as a convex functional that can be globally
optimized was pioneered by Chan et al. [18].

The problem of shape classification with respect to a given distance
function has been studied for a long time [46, 15, 34]. In this work,
we will only focus on the problem of unsupervised learning. For more



sophisticated learning techniques, we like to refer to classical SVM
methods as they are for example presented in [84].

1.4 Contribution

Certain parts of this work have been presented on different occa-
sions [79, 82, 83, 80, 27, 81]. The main contribution can be split
into four different components which is reflected by the structure
of this work. In Chapter 2 and 3, we study continuous methods of
shape acquisition and shape morphing. Chapter 4 is focused on dis-
crete methods of shape matching and shape clustering. Chapter 5
concludes this work.

Shape Acquisition

In Chapter 2, we address the problem of shape prior driven image
segmentation. Our main contribution is it to formulate this prob-
lem as a minimization problem which can be solved globally. Hence,
we can guarantee that our method finds the global optimum of a
very challenging Computer Vision problem. One key contribution
is the introduction of a new shape model, namely the stochastic
shape model. It is a relaxed shape model where we assign to ev-
ery point of the image domain the probability whether this point
is an element of the shape. As a consequence of this relaxed shape
definition, we can combine the advantages about the shape denois-
ing method by Chan et al. [18] and the dynamical shape prior by
Cremers [24]. By combining convex optimization and Lipschitz op-
timization techniques, we are therefore able to compute the global
optimum of a non-convex functional very efficiently.



Shape Morphing

In Chapter 3, we present the problem of shape morphing. To this
end, every shape is represented as a mapping of the parameterizing
circle into the real plane, i.e., ¢ : $& — R2. The set of all shapes
can then be modeled as an orbifold of infinite dimension. Any mor-
phing, namely the continuous transformation from one shape into
another can be represented as a path within this orbifold. By com-
puting a geodesic between two different shapes, the length of such
a geodesic defines a distance between the given shapes. Comput-
ing this distance efficiently is the goal of this chapter. After revis-
ing the classical shooting technique [51, 102], we propose a more
efficient method to compute such a geodesic. Whereas the shoot-
ing method relies on solving an ordinary differential equation, our
method addresses the original problem by applying the gradient de-
scent method to the given energy functional that has to be mini-
mized. As a consequence, our method is numerically much more
stable than the shooting method and by construction, it provides an
equidistant discretization of the geodesic in question. To make our
method more accessible to a broader audience, we will also provide
a brief introduction into the relevant differential-geometric concepts,
such as tangential spaces and geodesics.

Shape Matching

In Chapter 4, we propose two computationally inexpensive methods
to compute the optimal matching, namely the best correspondence
function between two different shapes. If each of the two shapes is
discretized by NN shape points, both approaches exhibit a worst-case
complexity of only O(N?log N). This is an important improvement
with respect to the cubic complexity, that the classical Dynamic
Time Warping approach [97, 65] (DTW) possesses. One approach
reformulates the problem as a graph cut problem. Since the under-



lying graph is planar, we will then present an efficient graph cut
method that makes use of this structure. Our method is based on a
recent work by Borradaile and Klein [10] which is empirically slower
than our method by a factor of about 2. Another method that we
present exploits the graph structure of the Dynamic Time Warping
approach. As a consequence, it improves the runtime significantly.
To our knowledge, it is the fastest DTW based method for shape
matching. To substantiate this, we also provide an extensive run-
time comparison to other popular shape matching methods. In the
last section of this chapter, we make use of the distance functions
computed in Chapter 3 and 4 to merge different shapes into a class
of similar shapes. We show that the shape matching approaches can
measure the similarity of different shapes quite well.

Conclusion

In Chapter 5, we present a conclusion of this work. Additionally,
we discuss challenging open questions and give an outlook on future
work.

10



Chapter 2
Shape Acquisition

In this chapter, we address the problem of acquiring shapes from
images. An image is a mapping I that assigns a color of a color-
space C' to every point of a rectangular subset 2 of the real plane
R2:

[1:Q-C (2.1)

For gray-scaled images, C' can be identified with a convex subset of
R. But in general, C is a convex subset of R which reflects the
chosen color model. The focus of this work is not on different color
models. Instead, every presented method can be applied on the one-
dimensional gray-scale color space as well as on a three-dimensional
color space like RGB, HSV or YUV.

Acquiring a shape results in assigning to every point x of the rect-
angular image domain Q a binary label ¢(z) that indicates whether
this point corresponds to a part of the observed object:

11



0:Q —{0,1} (2.2)
{1 , x is part of the observed object
€T

0 , otherwise.

The central goal of this chapter is to acquire shapes with respect to
prior shape knowledge. This means that we know what the object
that we seek for will look like. As a consequence, a given set of
shapes influences the search for the new shape that we are looking
for in the given image. This means, that the input data consists not
only of the given image but also of certain shapes.

To reach this shape acquisition goal, we will provide a brief introduc-
tion to different shape acquisition techniques in Section 2.1. Here,
we will focus on variational approaches, i.e., on approaches that try
to minimize a given cost functional. In Section 2.2, we will intro-
duce the concept of statistic shapes which results in a convex shape
space. Hence, vector space based dimension reduction or stochastic
modeling can be applied to any collection of statistic shapes. This
leads to a knowledge driven shape acquisition that we will present
in Section 2.3. It is an extension of the work of Cremers [24] which
results in a non-convexr functional. In Section 2.4, we will show how
this functional can be minimized efficiently. Especially, we will show
that we can always guarantee to find the global optimum.

2.1 Classical Shape Acquisition Methods

The core element of every variational method is the definition of an
energy functional that measures the performance of a possible output
given the specific input data. For the problem of shape acquisition,
we must therefore define such an evaluation functional. The easiest
way of evaluating a given shape ¢ of the form (2.2), is to measure

12



the deviation of the color information /(z) from a preselected color
model. This can for example be done by assigning unique colors
to foreground and background. So, if we assign to the foreground
the color p and to the background the color v, the following energy
functional measures the performance of a given shape /:

Eeotor(€) = /Q (I(z) — p)da + / (I(x)-v)2de  (23)

Qo

where
Q; ={z € Q(x) = i}.

Now, the goal is to find the global minimizer of the energy func-
tional Feolor. Since the minimizer of this functional is very sensitive
to noise (see also Figure 2.1), researchers have been experimenting
with different energies and it turned out, that the contour that sepa-
rates foreground from background is a good descriptor of the involved
shape and thus should contribute to the energy functional. Kass et
al. [48] ignored in their active contour approach the region inte-
gral (2.3). Instead they considered the image information along the
separating contour and penalized additionally the first and second
derivative of the contour in order to regularize the segmentation. An-
other approach combined the first derivative of the contour with the
image information along the contour. This geodesic active contour
approach of Caselles et al. [16] addressed the image segmentation
problem as minimizing the following energy functional:

Egac(C) = /C o()|AC(s) (2.4)

In this functional, g(s) is a positive function that depends inversely
proportional on the image’s gradient at the point s € C' C €. One of
the major drawbacks of this functional is the fact that the empty set
is the minimizer of this functional. Therefore, other constraints were

13



introduced to guarantee that a possible global minimum provides a
meaningful shape. For discrete approaches in this area, we would
like to refer to the concept of intelligent scissors [70] or to that of
corridor scissors [35].

Independent of this purely edge based approaches, Mumford and
Shah [71] proposed in 1989 an approach that was based on (2.3).
Their approach extended the functional (2.3) to a more general class
of color models and incorporated an additional term that penalizes
the length of the separating contour. Since we want to focus on
the simple color model which assigns a unique color to foreground
and background, we will here only consider the so called piecewise-
constant Mumford-Shah functional:

Fas(0) = /Q (I(z) — p)* do + /Q (I(z) — v)? dat
v - length(C') (2.5)

where length(C') describes the sum of the lengths of all €y-£2;-sepa-
rating contours. Note that {2y, 21 and C are uniquely defined by the
labeling mapping ¢. Only ~ is a parameter that can be chosen by
the user. It regulates the length of the shape’s boundary contours.
Since this model is only dependent on one parameter, this model is
easy to adapt to given input data. But it took about one decade to
find a way to solve the induced minimization task

¢ = argmin FEygs(4, pu,v) (2.6)
2:Q—{0,1}

in a continuous sense.

Previously, the discretized version of (2.5) was already known in the
80s and Geman and Geman [40] proposed in 1984 a method to solve
this minimization problem via an approach that was based on simu-
lated annealing. In 1989, Greig et al. [41] reformulated this problem
as a minimum cut problem. Therefore, (2.6) could be computed in

14



Figure 2.1: Segmentation. To retrieve a shape from a given
image (1% frame), we can apply a color model which results in a noisy
shape (2" frame). The geodesic active contour model (2.4) can find
an accurate shape, if we preselect some pixels that are part of the
shape (red circle in the 3" frame). Without any user interaction, the

Mumford-Shah functional (2.5) can also find a correct segmentation
(4 frame).

polynomial runtime. In 2001, Boykov and Kolmogorov presented an
efficient algorithm [12] to compute the minimum cut and this method
has since then become a very powerful tool in Computer Vision.

At the same time, Chan and Vese proposed one of the first continuous
approaches [19] to solve the continuous functional (2.5) via a curve
evoluting process. The region separating curve C' was modeled via
a signed distance function o:

v: Q>R (2.7)

—dist(z,C) ,ifz € Q
€T —
+dist(z,C) ,ifx e

Together with the Heaviside-function H:

H:Q —R (2.8)

0 ,ifz<0
€T +—
1 ,ifz>0

15



the functional (2.5) can be rewritten as

Eov(g) = /Q (I(x) — w)? - H o pla)+

(I(z) =v)*- (1= Hop(x))+
7 IV (H o p(z))|de (2.9)

Therefore, the problem of image segmentation can be formulated as
minimizing Fcy over the set of all signed distance functions. Using
gradient descent approaches, a minimum of this functional can be
found. But since the signed distance functions do not form a convex
set, the method can potentially get stuck in a local minimum.

This problem was circumvented by another reformulation of this
problem. In the seminal work of Chan, Esedoglu and Nikolova [18],
the expression H op has been replaced by the function uv : © — {0, 1}.
Additionally, the codomain of u was extended to the convex set [0, 1].
Therefore the Chan-Vese functional (2.9) became

Ery(u) = /Q (I(x) — w)? - u(x)+

(I(x) = v)* - (1 —u(z))+
v [ Vu(z)[de (2.10)

Since the set of all functions u form a convex set and the functional
FErv is convex, a gradient descent approach leads directly to a global
optimum. It may of course be possible that such an optimum u* as-
signs to some points of the image domain numbers which are neither
0 nor 1. But if we threshold u* with respect to the value 0.5, we
receive a function @ : Q@ — {0,1} that represents a shape:

u:Q—{0,1}



The important contribution of [18] was the so called thresholding
theorem that states that u is also a global optimum of Epy. Hence, a
continuous method to find the global optimum of (2.5) was found. In
combination with a primal-dual scheme [17], the developed method
was competitive to the graph cut methods in the mean of runtime
by using an efficient GPU implementation [95]. Also it was shown,
that the result of this continuous approach is more accurate than the
graph cut approaches since it inhibits metrication errors [52].

In fact, the thresholding theorem does not depend on the fact that
the image related data terms are quadratic. Moreover, any color
model for the background and the foreground of an image can be
used to find the global optimum of the image segmentation problem

Bry(u / fr(@) - u() + gr(x) - (1 u(z)+
(2) - IVu(z) [da (2.11)

Please note that for f; = gr = 0, this functional becomes the geodesic
active contour functional. Hence (2.11) covers any hybrid model
that involves regional terms and edge terms. The shape acquisi-
tion method that we use in this chapter is an extension of the func-
tional (2.11). Instead of penalizing the contour’s length, we will use
an energy functional that penalizes the deviation of a shape from a
preselected shape model. To this end, we will introduce in the next
section a shape model that forms a convex subset in a Hilbert space.

2.2 Stochastic Shapes

In the following, we introduce the concept of stochastic shapes. The
notion of shape fundamentally differs from classical definitions of
shape like £ in (2.2). We replace the hard decision of a point is part
of the shape by a relaxed probability associated with each point.
This probability should not be understood as a probability in the
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sense of probabilistic measure theory. It should rather be seen as
an application of the fuzzy set theory introduced by Zadeh [104].
The key contribution of the stochastic shape is to show that this
fuzzy relazation in the definition of shape gives rise to a number of
advantages in the context of shape modeling and shape inference.
Most prominently it enables us to acquire shapes from images in
a globally optimal manner under the consideration of prior shape
knowledge. So let us start by formally defining the stochastic shape:

Definition 1 (Stochastic Shape). An L*-function
q:Q—0;1] (2.12)

which assigns to any point € Q a probability ¢(z) that z is part of
the shape (cf. Figure 2.2, left side) is called a stochastic shape. The
space of all stochastic shapes will be denoted by Q.

In contrast to explicit representations, the above implicit represen-
tation does not depend on a specific choice of parameterization. In
contrast to alternative implicit representations of shape such as the
signed distance function of (2.7) or alternative representations [33],
the value of ¢ has a clear probabilistic interpretation. Also, there are
no redundancies encoded in ¢. In contrast, a signed distance function
¢ must almost everywhere fulfill the Eikonal equation ||Vy| = 1. As
a consequence, the set of all signed distance functions is not convex.
The set Q on the other hand forms a convex subset of a Hilbert space:

Proposition 1. The stochastic shape space Q forms a conver subset
of the Hilbert Space L?(2,R). This Hilbert Space is equipped with
the scalar product

@MnFAguw«@m (2.13)

The induced norm will be denoted

1

mw-é«wwﬁ (2.14)
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Figure 2.2: A relaxed notion of shape. In this chapter, we
introduce a novel definition of shape as a function ¢ : Q@ — [0, 1]
specifying the probability that a pixel z € R? is part of the shape
(left). In contrast to the commonly used signed distance represen-
tation (right), the resulting image segmentation with statistic shape
priors corresponds to the minimization of convex functionals over
convex domains.

Proof. Since Q is the set of all L? functions that map Q to [0,1], it
is obviously a subset of L2(Q2, R). For the proof of convexity, assume
p,q € Q. Now, we consider the convex combination ¢, := yp+(1—7)q
of these two shapes by choosing a specific v € [0;1]. Then, we have:

¢y (@) = p(z) + (1 = 7)g(z)  gy(z) = yp(x) + (1 = 7)q(z)
>v-0+(1—7)-0=0 <y l14(1—-7v)-1=1

O

Note that while Q is not a Hilbert space like L?(2,R?), Q is nonethe-
less a metric space. This means that the distance function

NI

dar,a2) = a1 — gal] = /Q (a1(2) = aa(x))2da
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is a metric:

Definition 2 (Metric). Given a space X, a functiond : X x X — Ry
is a metric if it fulfills the following properties:

Ve,ye X @ d(z,y) =0z =y (Positive Definiteness)

Y
Ve,ye X o d(x,y) =d(y,x) (Symmetry)
Vo,y,z € X : d(x,z) <d(z,y) +d(y,z) (Triangle Inequality)

The convexity of Q shown in Proposition 1 has an important tech-
nical consequence for statistic shape modeling and shape inference.
Especially, we can apply classical dimension reduction or model fit-
ting methods to shapes.

But also semantically, the convexity gives rise to some important
properties. The convexity of the shape space Q implies that any
convex combination of a set

X:{q177QN}CQ

of training shapes will correspond to a valid shape. In particular,

the mean
LN
n= N z; qi(x)
1=

is a function which assigns to each point x € () the average of all
probabilities. Similarly, statistic notions such as covariance matrices
and eigenmodes can be easily defined.

Definition 3 (Eigenmodes). The entries of the covariance matrix
¥ = (04,)ij=1,..,n are defined via the scalar product (2.13):

Cuy = ai -, 4 — ) = /Q (4:(2) — (@) (g; (@) — pla))dz
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Let v; € RY be the eigenvectors of ¥ with respect to the eigenvalue
Ai € R such that Ay > ... > Ay. Then, the following functions
P1,..., U8 Q2 — R
N
bi(x) =Y (v3); - (gj(x) — u(x)) (2.15)

J=1

are the eigenmodes of .

Note that the eigenmodes are not necessarily stochastic shapes. They
just define in what way most of the input shapes in y deviate from
their mean p. In particular, the eigenmodes help to reduce the infi-
nite dimensionality of Q to a convex subset of finite dimension that
still encodes the relevant information of .

Definition 4 (Finite subspace of Q). The subspace of stochastic
shapes spanned by the first n < N eigenmodes {¢1,...,1,} of the
set x is

n
Xn ::{Qazﬂ+zai¢i

i=1

qa(x) €10, 1]} (2.16)

which is a subset of the finite dimensional, affine space

n
)/C\n :—{QQ—N"FZO‘“%

=1

ac R”} (2.17)

We will now show that not only Q but also the set of all parameters «
in (2.16) is convex. This is a very important property for the image
acquisition method that we will present in the next section.

Lemma 1. The set xy,, in (2.16) is convex.
Proof. For any n < N, the set x, is the intersection of the affine

space X, with the convex space Q. Since both sets are convex, their
intersection is also convex which proves this lemma. ]
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LA LAAAR

Projection on the subspace x1

AARLEIAARA

Projection on the subspace x2

BB NERPPY

Projection on the subspace x3

SN NEREPY

Projection on the subspace x4

SR NNEREPY

Projection on the subspace x5

EESEENPED

Original Sequence

Figure 2.3: Dimension Reduction. A walking sequence (last
row) is projected onto the low-dimensional spaces x1, ..., x5 (15 to
5" row). Even at a one-dimensional projection the main information
about walking is recovered.
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The set of training shapes x can thus be approximated by nested
low-dimensional spaces:

{Hy=xoCx1C---CxnC--CxnCQ

The elements of a space x, are compactly represented by vectors
a € R™ of eigencoefficients, modeling the shape

Go=p+T a=p+Y @) o (2.18)
=1

We will now show that the set of eigencoefficients that describe
stochastic shapes form also a convex set:

Lemma 2. The set A, := {a € R"|qn € Q} of all feasible a is
convet.

Proof. Let ay, ay be two elements of A,, and y € [0;1]. Then we have
to prove that the shape representing vector v := yag + (1 — v)ag is
also feasible, i.e., a € A,:

Go =p+Ya=p+y¥ar + (1 —7)Vay
=y (p+ Y1) + (1 =) (p+ Yag)
=74, + (1 - 'Y)QOQ € Q.

O

So overall, we have defined the stochastic shape space Q and we could
not only show that this shape space is convex. In addition we also
introduced to every subset x C Q, a meaningful notion of eigenmodes
which define a convex, low-dimensional subspace x,. Finally, we
showed that the coordinate system A, of this subspace is convex
and we have a natural, affine mapping between A,, and x,,, namely
a— pu+W-a.
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EESEENPED

Original Sequence

SR NNEREPY

Stochastic Shape Space

RArRLEAIARA

Space of Signed Distance Functions

Figure 2.4: Dimension Reductions. If we perform a dimension
reduction with respect to the stochastic shape model (2nd row), we
receive better results than for the dimension reduction with respect
to the signed distance functions (3¢ row).

In Figure 2.3, a walking sequence xy C Q and its orthogonal pro-
jection onto x1,...,x5 is shown. One can see that even the five-
dimensional space x5 provides a good approximation of the relevant
information encoded in x. In Figure 2.4, the projection results for
the stochastic shape model is compared to a projection on a shape
space based on the signed distance functions [24]. Especially in the
third and seventh frame, we can see that the stochastic shape sub-
space encodes the details of x more accurately than the shape model
based on signed distance functions. In the next section, we will use
this representation to incorporate stochastic shape prior into shape
acquisition.
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2.3 Knowledge-driven Shape Acquisition

The general shape acquisition functional (2.11) can retrieve a shape
from an image under the assumption that the shown object can easily
be distinguished by the color information that the image provides.
Unfortunately, that is not always true. Due to clutter or occlusions,
there are certain small regions in the image to which the pre-learned
color model of (2.11) does not fit any more. On the other side,
humans are able to detect a person even when it is raining or snowing.
We believe that this is possible because humans are well aware of a
person’s shape or that they know how people normally walk. Hence,
we are able to filter out disturbing information and thus, we can
focus on the visual task that we like to solve. In Computer Vision
this situation has been modeled by introducing shape prior into the
segmentation [58, 94, 78, 24, 25].

In this section, we will propose a method to retrieve a stochastic
shape from an image applying three different concepts of shape priors
to the proposed stochastic shape model of Section 2.2. The concepts
that we apply to the acquisition of stochastic shapes are the concepts
of static uniform shape priors [94], static Gaussian shape priors [78]
and dynamical shape prior [24]. To this end, we assume that a
training set x = {q1,...,qn} C Q of known shapes is given. This
training set will be used to define different shape priors. All these
shape priors have in common that we only consider the first n < N
eigenmodes 11,...,1, of this training set as defined in (2.15). As
in Section 2.2, we denote the convex, finite dimensional subset of Q
spanned by the n eigenmodes as x,, C X, and the space of all possible
eigencoefficients is denoted as A,. Also, we use the notation ¢, to
denote the shape of x,, that is been encoded by a € A,, via (2.18).

To retrieve a shape from an image using the shape prior, we like to
minimize a cost function that penalizes the deviation from the color
model like in (2.11). At the same time a deviation from the shape
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prior should also be penalized. Therefore, we like to minimize a cost
function of the following very general form:

E(a) = Etv(¢a) + 7Eshape (). (2.19)

Here, Egpape is a cost function that penalizes the deviation of a given
shape ¢, from the expected shape and v is a parameter that weights
the importance of the chosen shape prior. For the cost functional
FErv we have to model the color distribution for the foreground and
background via functions f and g respectively. Meaningful choices
of f and ¢ for shape acquisition are given by:

f=—1logpa(I) g = —logpyy(I) (2.20)

where p,, and py, represent the color histograms (probabilities) of
object and background [77]. Since the shape prior acts as regularizer,
we do not need the edge term h of (2.11) any more and we set h = 0.

For the shape energy Eghape in (2.19), we consider one of the follow-
ing three statistic shape priors:

1. Static uniform shape priors The distribution of training
shapes is assumed to be uniform within the eigenmode space
A,. Such a model was introduced for level set functions in
[94] and it corresponds to setting Eghape = 0 in (2.19). One
may argue that this leads to a function that does not differ
from (2.11) and will therefore lead to the same solution. This
is not true since the set of feasible solutions is reduced. Note
that we optimize over @ € A,,. Therefore, we consider only
shapes that can be represented via the first n eigenmodes of .
Hence, this is in fact a shape prior even if we do not alter the
corresponding energy function.

2. Static Gaussian shape priors: The distribution of training
shapes is assumed to be Gaussian. By using the covariance
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matrix X computed in Section 2.2, we receive a Mahalanobis
type energy of the following form:

Eshape(@) = {a, ¥7'a) (2.21)

A related model was proposed for level set functions in [78].
It has an important advantages over the uniform shape prior,
because it penalizes the deviation of the first few eigenmodes
more than the deviation from the remaining eigenmodes. As a
consequence the relevance of the first few eigenmodes is empha-
sized more adequately by this model than the uniform shape
model. Since the cut off after the nth eigenmode leads to a
virtual infinite penalization of the eigenmodes ¥, 41,..., 9N,
the Gaussian shape prior is more sensitive to the choice of the
parameter n. It should therefore be chosen carefully.

3. Dynamical shape priors: The evolution of shape vectors « is
modeled by a linear dynamical system. This sophisticated
shape prior can only be used if we have to deal with a whole
collection of images. Therefore it is well suited for the problem
of object tracking in videos. Since the stochastic shapes form
a convex set, we can train a Markov chain model of the form

k
B = Z AifBr—i +, (2.22)
i=1
where 7 describes the involved Gaussian noise and Ay, ..., Ag

model the linear dependency of the current eigencoefficient [,
with respect to previous eigencoefficients G;_1,...0i_r. k is
also known as the size of the Markov chain model. Such a
model can be learned by assuming that the elements of the
shape prior x are given in a ordered manner such that the se-
quence qi, ..., qn describes a natural motion that can be mod-
eled via the chain model (2.22). Then, every shape ¢; € x
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can be modeled by an eigencoefficient vector 3; € A,,. These
vectors can give rise to the autoregressive model parameters
k,Aq,..., Ay via classical methods such as the one presented
in [72]. This model now gives rise to the following shape energy
at a certain time t:

EShape(a) - <a — U, Z_l(a - Ut)>7 (2'23)

where v; = Zle A;af_; is the prediction by the Markov chain
based on shape estimates o;_{,...,a;_, obtained for the last k
images. A related model for level set functions was introduced
in [24]. Since level set functions do not form a convex set, the
resulting shape priors v; have to be projected back onto the
space of feasible level set functions. For the statistic shape
priors this is not necessary any more.

In order to simplify the models of (2.22) as much as possible, we
assumed that the given shapes ¢; are transformed in a way that the
pairwise distance of consecutive shapes is minimized. In other words,
we compute the following minimum, prior to the model learning

f; = argmin qu 0f7! — qi,lH
9ESE(2)

— argmin/ (qi(é?_lx) — qi_l(a:))2 dx
0eSE(2) J0

and every shape ¢; is replaced by ¢; (61 0---06;(z)). As a conse-
quence, the learned shapes are free from possible rigid body trans-
formations. Hence the autoregressive model represents only the con-
tinuous deformation of shapes. This makes model learning much
easier and our model is thus independent from translation or rota-
tion which may be influenced by camera movements.

For the shape acquisition on the other hand, the transformations
have to be put back into play. Now, we have to consider any possible
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transformation of # € SE(2) in order to find the exact shape in the
current image. To this end, we define an energy function E(a, #) that
depends on shape parameters o € A,, as well as the transformation
parameter 6§ € SE(2) modeling rigid body motions:

E(a,6) = Bry(¢a(62)) + 7Eshape(c) (2.24)

with Epv defined according to (2.11) and with Egpape defined either
as 0 or defined according to (2.21) or (2.23).

Even though the resulting function F is not a convex function, we
will show in the next section how we can guarantee to find the global
optimum by combining a convex optimization technique with the
concept of Lipschitz optimization.

2.4 Global Optimization

In this section, we will show how to globally optimize the non-convex
function (2.24).

In order to do so, we use a separation of variables:

min E(q, ) = min (min E(«, «9))
.l [/ «

Thus, we have to apply two optimization methods. The first one
computes the global optimum of E(«,#) with respect to . This
global optimum will then be dependent on #. As a consequence, we
have to compute the global optimum with respect to 6 of a function
E* that is induced by this first optimization process:

E*:SE(2) —R (2.25)
0 — min E(«,0)

OfEAn
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In the next section, we will show how to compute E* by applying
a convex optimization technique. In the subsequent section, E* is
optimized via a Lipschitz optimization approach.

2.4.1 Convex Optimization for Deformations

In Section 2.4.2; we will show that E* can be optimized with a
Lipschitz optimization technique. This approach only depends on
evaluating E* at some discrete points. Nonetheless, it will up to a
preselected error € always compute the global optimum of the con-
tinuous function. This optimization approach depends highly on the
accurateness of computing E*(6). Thus, we have to show first that
E* can be computed very efficiently. In fact, we show that com-
puting E*(6) results in optimizing a convex function over a convex
domain:

Proposition 2. To evaluate E* at a given rigid body transformation
0 € SE(2) results in optimizing a convex function over a convex
domain.

Proof. Due to Lemma 2 we know that the optimization domain A,, of
feasible o values forms a convex set. Therefore, we need to prove that
the optimization involved in evaluating the function £E* is convex in
a € A, for any choice of data term and any of the three shape
priors discussed in Section 2.3. The zero function that describes
the uniform shape prior is obviously convex. For the Gaussian shape
prior (2.21) as well as the dynamic shape prior (2.23), the introduced
functions Egpape are both quadratic in a with the positive definite
covariance matrix X! as their Hessian. Hence, all considered shape
prior functions Egpape are convex. The function Ery that evaluates
the goodness of the shape with respect to the image information, is
also convex in g, [18]. Since g, is affine in a (cf. (2.18)), the function
a +— Ery(a,0) is a composition of a convex function with an affine
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\‘ Q

Figure 2.5: Iterated Projections. The intersection of the convex
shape space Q with the finite dimensional space X, results in the
convex set x,. Starting with g,, & xn, a solution in x,, is obtained
by iterated projections.

mapping and thus convex in «. Since E is the sum of two convex
functions, it is itself convex. O

Before we go on describing our Lipschitz optimization scheme, we
give some remarks on how to compute E* efficiently. Since the energy
F is convex in «, a gradient descent approach would always lead to
the global optimum «*. In particular, if a* is within the domain
A, of feasible o, we have thus found a way to compute E*(0). But
problems may occur if o is outside of our convex domain. In this
case, we have to re-project the computed « at any time that we
leave the convex domain [74, 75]. Since our convex domain is quite
complicated, this projection can become computationally expensive.
To cope with this problem, we propose an iteration scheme that
approximates this projection. So, we will define a sequence (ay), o
of eigencoefficients that converge towards an o’ € A,, (cf. Figure 2.5).
The presented method works as following:

1. Let a1 := .

2. For all k =1,2,..., do the following
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(a) At first, we project the given shape function g,, onto Q
which amounts to setting all values to 1 or 0 which are
above or below these levels respectively. This is in fact
the orthogonal projection of ¢,, onto Q with respect to
the L2-norm of (2.14). Denote this projected shape as sj,.

(b) By projecting si onto X, we receive a shape of the form
uw+ V- apr1. This defines the next a value. Since, the
eigenmodes describe an orthonormal system, the compo-
nents of ay41 can be easily computed via

(aps); = /Q (58(2) — (@) W (2)da

Note that this sequence will not necessarily converge towards the
right projection. But it will converge towards a point of A, as we
will show in the following proposition:

Proposition 3. Let o € R" an arbitrary vector and (ay),c be the
sequence defined as above. Then

lim dist(ga,,xn) =0

k—o0

Proof. Let us assume that there exists an ¢ > 0 such that
dist(qa,, Xn) > € holds for every k& € IN. We will show that this
will lead to a contradiction and thus proving the proposition. For
now, we choose an arbitrary element q € x, that we will use as a
reference shape. Note that every iteration oy — a1 consists of two
orthogonal projections onto convex sets, namely onto Q in the first
step and onto Y, in the second step. The property of convexity of
these two sets results in

sk = al” <llga, — qll* — dist(gay, 2)?

derer — al|” <llsk — all® — dist (s, Xn)?
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and as a consequence

ank+1 - QH2 Sank - q”2 - (dlSt(qak7 Q)2 + diSt(8k75€n)2)

Since the distances dist(gq,, Q) and dist(sg, X») are always realized
by elements which are at least by € away from A,,, the whole expres-
sion can be simplified as

gy — al|” <llgoy, — al|* — dist(Q, X)? (2.26)
with

Q:={q € Qe < dist(q, xn) < dist(qa,, xn)}
Xn ={q € xnle < dist(q, xpn) < dist(ga,, xn)}

Since Y, and Q are disjoint compact sets, their pairwise distance is
positive and according to (2.26), the distance between oy and a will
drop below any possible threshold after a finite amount of time. This
contradicts the assumption that dist(qa, , x») will always be above .
Thus, the proposition is proven. ]

Note that the orthogonal projection of a gradient update always
results in an element that has still a smaller energy value than the
starting element. Therefore, the method of iterated projections leads
to a shape in yx,, that has a smaller energy than the starting shape.
Hence, combining this approximative projection scheme with a gra-
dient descent approach will eventually lead to the global minimum.
In our experiments, we noted that after five iterated projections, the
process of iterated projections normally halts. Therefore, the time
consumption is considerably reduced via the presented approxima-
tive projection scheme. In Figure 2.6, an example for the iterated
projection is shown. If we look at the thresholded shape in the sec-
ond row of that figure, we can observe how the iterated projection
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Figure 2.6: Iterated Projections for Stochastic Shapes. The
method of iterated projections (15% row) pushes the probabilities at
every pixel towards the interval [0; 1] of feasible values. For the shape
thresholded at 0.5 (2nd row), this results in restoring important parts
of the shape.

results in repairing the threshold shape. The right leg for example
is repaired by this projection. This is an important property of the
shape prior driven shape acquisition. The observed data is repaired
with respect to the pre-learned shape prior.

2.4.2 Lipschitz Optimization for Transformations

As we have seen in the last section, we are able to compute E*(6)
of (2.25) for any transformation # € $'. Now, we have to minimize
this function. Note that we cannot use the same technique as in the
last section because E* is highly non-convex. But we will show that
E* is Lipschitz continuous and as a consequence, we can find an ap-
proximation of the global optimum by an adapted exhaustive search.
Even though an exhaustive search is a classical discrete optimization
scheme, the main contribution is to provide a good approximation
of the global minimum with respect to original continuous function.
So in the end, we are able to solve the problem of sampling a con-
tinuous domain in finite time. This is done by sampling it only at
finite positions and at the same time we can guarantee that we have
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a good approximation of the global minimum with respect to the
continuous domain.

To this end, we assume that every shape of x lies within a finite
radius of p near the origin, and thus all shapes are bounded from
above by the function ggpp:

L iflzfl < p

Vo€ Ayt qa() < gsupp(T) = {0 else.

(2.27)

As a consequence, the support of ggupp lies inside of the ball B,(0)
of radius p centered in 0. We will now show that under mild reg-
ularity assumptions, the function E* can be globally optimized on
SE(2) using the idea of Lipschitz continuity [43]. This technique was
used in Computer Vision before to solve the problem of point cloud
registration [59].

To find the global optimum of E*, we iteratively subdivide the 6-
domain SE(2) into multiple smaller domains — see Figure 2.7. For
every sub-domain D C SE(2), we calculate the energy at one chosen
sample 0y which provides an upper bound for the global minimum.
Provided that the gradient of E*(0) is bounded, a lower bound for
each sub-domain D can be determined. By performing a branch-
and-bound method, we subdivide the sub-domains with the most
promising lower bounds. In doing so, we iteratively find tighter lower
bounds and terminate once sufficient accuracy is obtained.

To determine the lower bound for a sub-domain, we assume that the
functional does not oscillate too rapidly. In other words, we need to
assume that the following Lipschitz condition holds:

Definition 5 (Lipschitz). The function F' : SE(2) — R is called
Lipschitz continuous if there exists a uniform L € R such that for
all 01,05 € SE(2) the following inequality is fulfilled:

|F((91) — F(92)| < Ldist(@l, 92)

35



Figure 2.7: Lipschitz approach. If E* (solid line) is Lipschitz
continuous (cf. Definition 5), then one can globally minimize it in a
continuous sense by iteratively finding lower bounds.

For differentiable functions F this definition is equivalent to the prop-
erty that the derlvatlve 47 1s bounded by L.

In order to prove that E* is Lipschitz continuous, we proceed as
follows: First, we will estimate a Lipschitz constant L for the function
E(a, ) at fixed value a. Afterwards, we will show in Proposition 4
that the same constant L is also a Lipschitz constant for E* itself.

Lemma 3. If all functions of the training set x are Lipschitz con-
tinuous with constant Ly, then E(c, ) is Lipschitz continuous with
respect to 0. The Lipschitz constant is independent of «.

Proof. Any transformation € SE(2) = R? x SO(2) can be written
as 0z = R(x+t), with arotation R € SO(2) and a translation ¢ E R2.

In order to compute d9 , we have to compute <; dE and dE H H can
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then be computed via H H + H H

=)/

(Vg(z —t) = Vf(z — 1)) ga(Rz)dz
B,(0)

< / 1(Va(z — 1) — VF(@ — )| guupp()dz
B

< [ | 1vs - Vg<:c>u2dx] s

Since SO(2) is a Lie group, g_fz is computed by projecting the re-
sulting matrix on the Lie algebra so(2) of skew-symmetric matrices
which can be represented by one single real-value:

ial |

(f = 9)(& — 1) (Re)dz

B,(0)

/ U060 ViR gy

where [( g3t a32)] s0(2) = @12 — g1 Tepresents the orthogonal projection

of A onto the Lie algebra so(2)

/ (f — g)(x — ) det (z, Vaa(Rz)) do
B,(0)

<Lyp /Q (f — 9)(@)|dz

with geupp defined in (2.27). Since H H

have found a uniform upper bound for VE that does not depend on
(0,a) € SE(2) x Ap,. Thus, E is Lipschitz continuous in 6 and the
Lipschitz constant does not depend on . U

, We
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Proposition 4. Under the above reqularity assumptions on the
training shapes, the segmentation argmin, g)ca, xsg(2) E(a,0) can
be determined in a globally optimal manner.

Proof. Tt suffices to prove that E*(6) is Lipschitz continuous. Let
L be the Lipschitz constant of F(«,f) and 61, 02 be two different
transformations of SE(2). Then, there are two elements oy, ap € A,
fulfilling £*(01) = E(a1,01) and E*(03) = E(ag,02) resp., i.e.:

E(al,Hl) SE(CMQ,Ql) AN E(Oég,eg) §E(a1,92.)
Using the first inequality, we obtain

E*(02) — E*(601)

E(CYQ,HQ) —E(al,ﬁl)
E(CYQ,HQ) — E(Clg,el) 2 —Ldist(&l,eg),

Y

while the second one gives:

E*(Qg) — E*(Gl) = E(OéQ,HQ) — E(oq,@l)
S E(Oél,HQ) — E(oq,@l) S Ldist(@l,é?g).

Thus, E* is Lipschitz continuous with the Lipschitz constant L. [

Overall, we showed how to acquire shapes with prior shape knowl-
edge by globally optimizing a non-convex energy functional. In the
next section, we will apply this method to acquire shapes from a
walking person.

2.5 Tracking Walking People

In Section 2.4 we introduced an algorithm to acquire a shape from
an image under the condition that we have previously learned the
structure of the shape that we expect. This algorithm is based on
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Lipschitz Optimization

Figure 2.8: Local versus global optimality. Image segmenta-
tion with a dynamical shape prior, implemented by gradient de-
scent (1°* and 3" row) and by Lipschitz optimization (2"¢ and
4™ row). While gradient descent can handle partial occlusion by
the table, it fails to handle total occlusion. The proposed Lipschitz
optimization, on the other hand, guarantees the globally optimal
solution and therefore reliably tracks the person upon reappearing
from behind the white board.
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convex minimization of deformation parameters interlaced with Lip-
schitz optimization of transformation variables.

To clarify the effect of the Lipschitz approach, we will show a com-
parison of the algorithm run without and with the Lipschitz op-
timization for a sequence showing a person walking in a cluttered
scene. While more accurate results may be obtained with a user-
specified stick-figure model, one should keep in mind that the pro-
posed method does not require any user interaction in the model
building. It can directly be applied to arbitrary stochastic shapes
including purely binary shapes.

To this end, we construct a dynamical shape prior by hand-
segmenting a different sequence (showing a different person walking
at a different pace). By box-filtering these binary functions, we re-
ceive probabilistic shape functions that are Lipschitz continuous ac-
cording to definitions 1 and 5. In order to reduce the dimensionality
of the input data, we use Ag as the parameter space (cf. Figure 2.3).

As image energy, we use the approach (2.20) where f(z) and g(z) are
the negative log probability for the observed intensity given that the
pixel x is part of the foreground or the background respectively. Ne-
glecting the edge indicator term h in (2.11), we receive the following
energy functional:

= 0 Peg (1) x)dx a—vl|2
(0, 0) = Q/ g ()Y oo +alla w229

where |ja — ve||5-1 = (o — v;) X" (@ — v;) describes the energy of
the dynamic shape prior — see equation (2.23).

During our experiments, we compare a pure gradient descent on «
and @ with the proposed Lipschitz approach. Figure 2.8, 15" and 34
row, shows that the pure gradient descent works well in the pres-
ence of partial occlusions such as the table. Yet, it fails to cope
with larger occlusions where the local optimization gets stuck in a
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Figure 2.9: Detection of inconsistent solutions. The plot
on the left shows the image energy Ery as a function of the frame
number. Red crosses indicate the four frames shown on the right.
Incorrect segmentation results due to a total occlusion of the object
of interest can be automatically identified and suppressed (2nd and
3rd frame).

local minimum with respect to 6. In addition, the gradient descent
approach obviously requires an appropriate initialization. Both of
these drawbacks are resolved by the proposed global optimization
based on the combination of convexity and Lipschitz optimization —
see Figure 2.8, 2! and 4% row.

In Figure 2.9, we show that our algorithm also provides a reliable
criterion to determine whether a computed result is consistent with
data or not: Reliable segmentations correspond to low (negative) en-
ergy, while unreliable ones (full occlusion) correspond to high (pos-
itive) energy. As a consequence, we can detect the full occlusion of
the white board. For the affected frames, the shape minimizer (2.28)
is not meaningful in the sense that the appropriate shape cannot be
found in the image. Hence, we can omit the minimizer of the shape
functional. Therefore, we only acquire meaningful shapes with re-
spect to (2.28). This demonstrates that a person can be reliably
tracked through clutter and occlusions without the need to reinitial-
ization.
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2.6 Limitation of L2-distances

In this chapter, we showed how a region-based shape model can be
a powerful tool to acquire shapes from images. Nonetheless, the
involved region-based L?-metric is a rather primitive metric. If two
shapes (1,05 € Q are binary, i.e., if they are of the form (2.2), the
following holds:

01 — £o]|* = area ({z € Q1 () = 1} A {z € Qo (z) = 1)) (2.29)

This means that the L?-metric measures the symmetric difference of
the two given shapes. Therefore, the L?-distance has two important
drawbacks:

Sensitivity to Local Transformations: Local transformations
appear when the shape in question represents an object that
consists of different parts which can be moved independently.
In the example of a walking person, the legs and arms can be
moved independently. For the person, these are only small
changes. With respect to the L2-distance, this may have
a large effect if the extremities of the person exist in non
overlapping areas of the image domain.

Sensitivity to Local Deformations: To recognize similar ob-
jects, we cannot always assume that the shape looks every time
exactly the same. Even if the same person is present in the im-
ages, he/she may have changed clothes and as a consequence
he/she appears thicker in winter or thinner in summer. But to
have a general system that recognizes whether a given shape
is the shape of a person and not only of a specific person at
a specific time, this system should be robust with respect to
local deformations.

For the presented shape acquisition, these drawbacks could be cir-
cumvented by applying a Markov chain model. Also, the image data
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dominated the shape acquisition process. Note that the shape prior
was only used to repair the shape acquisition. The most important
data came from the images. This means that the shape prior was
just used to improve the performance of a purely data driven shape
acquisition method. In the next chapters, we will compare different
shapes. Therefore, we have to find a method that compares shapes
at a totally absence of any additional data. We are still interested
in a space equipped with a distance function. But due to the men-
tioned drawbacks of the L?-metric, we will use different spaces. In
Chapter 3, a metric is defined by the shortest path length within
an infinite dimensional manifold that defines a shape space. This
shape space is more sophisticated than the stochastic shape space
Q. In Chapter 4, a pseudo-metric is defined by studying the group
of shape diffeomorphisms. Such a diffeomorphism is also known as
a matching. We will show that the pseudo-metric induced by the
matching function is a very helpful tool to classify different shapes.

43



Chapter 3
Shape Morphing

In the previous chapter, the similarity between two shapes was com-
puted as a region-based L2-distance (cf. (2.14)). In this chapter, we
want to advocate the philosophy that a shape is best described by
its outer boundary, which can be represented by a contour in the
plane. We will see that this concept of shape is much more robust
with respect to local deformations. As a result, we do not have to
model the most likely deformation to introduce a meaningful mea-
sure of similarity as it was done in the last chapter in the mean of
the Markov chain model (cf. (2.22) and (2.23)). On the other hand
we ignore possible holes inside of the shape (see also Figure 1.2).

A lot of researchers have put a considerable amount of effort into the
understanding of shapes. Measuring the dissimilarity between two
given shapes can be done by defining and examining metric spaces
which model shapes (cf. [32, 26, 28, 6]). In this chapter we follow
the idea that a contour is a smooth loop in the plane. Thus, we
like to consider all mappings ¢ : $! — C that assign a point in the
plane C to every point s of the circle $' = {s € C||s| = 1}. Every
closed loop can be described as such a mapping c. In this chapter,
we will make use of the algebraic structure of C. Therefore, the
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plane is modeled as C instead of R? as it was done in the previous
chapter. In order to consider shapes which are independent with
respect to translation or rotation in C, we have to merge different
representations of a shape. This results in a shape space 8 whose
elements are described as sets of contours. Each of these sets is a
class of equivalent contours that describe a shape. Hence, we have
to define an equivalence relation which will be done via a group that
operates on the set of contours. In this chapter, we will present
different models of such shape spaces which have all in common that
they do not form a convex set or even an affine vector space. But
even for these spaces, we can define a metric by considering the
paths m : [0;1] — 8 that connect two different shapes Cp = m(0)
and C; = m(1). The distance dist(Cp, C1) between Cj and Cy will
then be defined as the shortest path length of such a path m that
connects Cy and C;. We call such a path m a morphing because
it describes how one shape Cj is continuously transformed into Cf.
In this chapter, we will present a variational method that computes
such a morphing very efficiently.

Our work is built on several prior works. Michor and Mumford in-
troduced in [66] a shape space 8 that is path-connected. Therefore,
it makes sense to look for the shortest path that connects two dif-
ferent shapes. Since $ is defined as an orbifold!, every path can be
measured and the shortest length of a shape-connecting path can be
computed. But unfortunately, a quite canonical approach results in
the trivial shape distance function dist(-,-) = 0. In order to cope
with this result, Michor and Mumford introduced another approach
that depends locally on the shapes’ curvature. Since the compu-
tation of the shortest path results in solving a challenging partial
differential equation, we will follow another approach.

This approach was advocated by Klassen et al. [51]. Instead of con-

! An orbifold can be understood as a manifold modulo a group operation. For
a detailed introduction see [92]
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sidering all representations of a shape, they only considered those
curves ¢ : $! — C which are parameterized by arc-length. As a con-
sequence, they received a shape space 81 on which shortest paths are
much easier to compute than on §, since it results in solving multiple
ordinary differential equations. As a consequence, the calculation of
a morphing path could in many cases be done within seconds using
the so-called shooting method. This method uses a searching beam
from the initial shape. That beam will be changed until it hits the
target shape. During this transition from the initial shape to the tar-
get shape, the beam is deformed according to the underlying metric
just as a light beam is bent by gravity in the theory of general rel-
ativity. Computationally, this method is still quite expensive but
faster than the method proposed by Michor and Mumford.

The focus of this work is it to show how these shortest paths can
be computed even more efficiently by minimizing the involved en-
ergy functional. This method is a gradient descent approach which
converges quite rapidly in comparison to the shooting method. This
chapter is organized as follows. In Section 3.1, we will present the
two shape spaces & and 8;. In Chapter 3.2, we will address the dif-
ferential geometrical concepts of submanifolds, tangent spaces and
geodesics. In order to make these concepts accessible to a broader
audience, we will omit the concepts of local charts and Riemannian
metrics. Instead, we concentrate our efforts on submanifolds that
are isometrically embedded in Euclidean vector spaces.

In Chapter 3.3, we will present our concept of computing a geodesic
efficiently by consecutively shortening a path until it becomes a
geodesic. We finalize this chapter with a comparison of our method
to the shooting method. It turns out that our variational path-
shortening method will be faster by a factor of up to 1000 depending
on the used shape resolution.
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Figure 3.1: Immersion. Smooth mappings ¢ : [0;1] — C into
the plane C do not necessarily define a smooth contour. If ¢ is an
immersion (3" image), ¢ describes always a smooth contour.

3.1 Shape Spaces as Orbifolds

In this section we will present a shape model that differs from the
model of stochastic shapes in the last chapter in the sense that we
only consider shapes that consist of one connected, smooth boundary.
This boundary can therefore be described via a contour ¢ : $! — C.
To guarantee that ¢ describes a smooth contour, ¢ has to be an
immersion (cf. Figure 3.1):

Definition 6. A mapping ¢ : $! — C is called an immersion if it
fulfills the following properties:

1. ¢ is a smooth mapping, i.e. for every k € IN the derivative
k) §l — € exists.

2. ¢ is invertible, i.e. the inequality ¢/(s) # 0 holds for every
se st

The set of all immersions from $! into C is denoted as Imm($*, C). To
every immersion, we define the immersion index. This is the winding
number of the derivative ¢ with respect to 0 € C (cf. Figure 3.2):
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Figure 3.2: Immersion Index. Two contours (1%' column) and
their derivatives (2°¢ column) are shown. The contour of the 1% row
has an immersion index of 1 while the contour of the 2"d row has an
immersion index of 0. Hence, the contours cannot be transformed
into one another.
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. 1 xdy — ydz
ll’ld(C) = % /C', W S/ (31)

The set of all immersion of a specific index k € Z is denoted as
ImmF¥($!,C). The set of all immersions ¢ € Imm*($', C) that are
parameterized by arc-length is denoted as Imm%($!, C). These are
immersions for which ||| = 1 holds.

It follows from Algebraic Topology [44] that contours can not be
transformed into one another if they differ by their immersion index.
Also, if ¢ € Imm($!, C) describes the boundary of a binary shape,
the immersion index is either —1 or +1 depending on whether the
boundary is swept in the clockwise or the counter clockwise sense
respectively. Therefore in order to compute a morphing, we are in
the following only interested in immersions of index 1. If a shape
is now given in a binary form, the representing contour ¢ can be
easily derived by starting at an arbitrary point of the boundary and
following the boundary in a counter clockwise sense. Even though
the orientation of the curve is fixed, the curve is still quite ambiguous
in the sense that there is no natural way to define the starting point
of the described sweeping process. Moreover, if we reparameterize
the circle 8! via any differentiable mapping ¢ : ' — $', we receive
another curve c o ¢ that describes the same contour as c. Since,
we are only interested in reparameterizations that lead to another
immersion, ¢ itself has to be a diffeomorphism:

Definition 7. A mapping ¢ : $' — $! is a diffeomorphism if it fulfills
the following properties:

1. cis a bijective mapping.

2. cand ¢! are C*°-mappings.
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The set of all diffeomorphisms of the circle is denoted as Diff($!).
Any of these diffeomorphisms describes a loop on $! that passes S' ei-
ther in a counter clockwise sense or in a clockwise sense. The set of
counter clockwise passing diffeomorphisms is denoted as Diff 7 ($!)

and the set of clockwise passing diffeomorphisms is denoted as
Diff~ ($1).

Together with the composition, the sets Diff($!) and Diff"($!)
form groups, but from these both groups, only Diff"($!) acts on
Imm!($!, C) as reparameterization group. This is because a diffeo-
morphism ¢ € Diff ~($') maps any immersion ¢ € Imm*($!, C) onto
an immersion of Imm~*($', C). According to these observations, we
can get rid of possible ambiguities of the presented shape represen-
tation by considering the quotient of Imm?!(S$!, C) and Diff ™ ($!):

Definition 8 ([66]). The space of immersion based shapes is defined
as the orbifold

§ := Imm?!($!, C)/ Diff 7 ($?) (3.2)

Within the space Immj(S$!, C), there exists the following set
S ={s 75V €8'} (3.3)

which contains multiple representations of the circle each of these
only differs by its starting point. Furthermore, S itself is a circle
embedded into Imm}($', C) and parameterized via 7.

In [66] it was shown that S is a smooth, strong deformation retract of
the space Imm'(S!, C). Such a retract is a subset that contains most
of the relevant topological properties. The mathematical definition
is the following:

Definition 9. A subset A C X of a topological space X is called a
smooth strong deformation retract, if there exists a smooth function
r:[0;1] x X — X such that
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o 7(0,z) =z for all x € X.
e r(l,z) € Aforall z € X.

e r(t,a) =aforall a € A and ¢t € [0;1].

A smooth, strong deformation retraction r moves therefore any ele-
ment x of the superset X smoothly on an element in the subset A.
A lot of interesting topological properties can be transported from A
towards X. But first let us recapitulate what was shown by Michor
and Mumford for the presented sets of immersions?:

Theorem 1 ([66]). The following two declarations hold:

e Immi($!,C) is a smooth strong deformation retract of
Imm?! (S}, C).

e Immi($!, C) contains the circle S of (3.3) as a smooth strong
deformation retract.

As a consequence, we can show that Imm]($!,C) and Imm'(S$!, C)
are path-connected spaces. This means that to arbitrary elements of
the respective sets, we can find a path within this set that connects
the two elements:

Corollary 1. Imm}($',C) and Imm'($',C) are path-connected
spaces.

Proof. Since the circle S of (3.3) is obviously path-connected, it suf-
fices to show the following: If A is a smooth, strong, path-connected
retract of a topological space X, X itself is path-connected. If we
can show this, Imm}($', C) is path-connected because $' is path-
connected and as a consequence, Imm!($!, C) is path-connected be-
cause Imm1($', C) was already path-connected.

20ut of simplicity, we restrict ourselves to the properties of the index-1-
immersions
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Hence, let us assume that r : [0;1] x X — X is a smooth strong
deformation retraction from X onto the path-connected space A C
X. Further, let z,y € X be arbitrary but fixed elements of the
superset X. Since A is a path-connected space, there exists a path
p: [0;1] — A that connects a, :=r(1,z) € A with a, :=r(1,y) € A.
Now, we define the following path ¢ in X:

q:[0;1] =X
r(3t,x) Jift e [0; %]
t—<pBt—1) ,ifte[%;%]
r(3—3t,y) ,ifte [3;1]

?

Since ¢(0) = r(0,z) = x and ¢(1) = r(0,y) = vy, ¢ starts in x and

ends in y. In order to show that this is really a continuous path from

T to y, we have just to show that the path is well defined at the
2

points t = % and ¢ = 5:

. <3%x) — (1, 2) —as = p(0) = p <3§ - 1)

(52 1) )y ot = (3 52.0)

O

Note that any path m : [0;1] — Imm!($',C) defines a path m :
[0; 1] — S on the quotient space 8 by assigning to every ¢ € [0; 1] the
equivalence class of m(t), namely

where [m(t)] denotes the equivalence class in 8 that itself contains
the immersion m(t). Hence, the shape space 8 is like Imm!($!, C)
a path-connected space and it makes sense to define the similarity
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between two shapes as the length of the shortest path between two
shapes. In order to compute the similarity between two shapes as
efficient as possible, we want to focus on pure L?-distances. Since
it was shown in [66] that a canonical L?-distance for Imm!($', C)
leads to a trivial metric on 8, we will now turn our attention on a
shape space that is based on contours modeled via Immj ($', ©), i.e.,
the contours have to be parameterized by arc-length. This shape
concept was advocated by Klassen and his coworkers [51]:

1. Since this shape concept is based on contours which are pa-
rameterized by arc-length, Diff 7 ($!) is not a group operation
any more. This is because an arbitrary reparameterization
¢ € Diff 7 ($!) may change the speed of a contour. In fact, if ¢
is parameterized by arc-length, the following holds for ¢ o ¢:

=< (()) - ' (s)]
=l (s)] - || (e ()| = #'(5)

Hdi o(5)

We used the property that for any ¢ € Diff 7 ($!), ¢’ > 0 holds.
To guarantee that c o ¢ is also parameterized by arc-length,
we allow therefore only those reparameterizations ¢ for which
¢’ =1 holds. Therefore, a reparameterization is only allowed
to change the starting point of the contour. As a result, the
reparameterization group acts now as $'. To ¢ € Imm}($', C)
and 7 € 8 C C, the reparameterized contour ¢, is then defined
as:

e 8 —C (3.4)
0 —c(0-T)

2. Secondly, the modeled shapes should be invariant with respect
to rigid body transformations. In the real plane R? such as
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transformation consists of a rotation R = (Cf’s(a) 7Sin(a)> €
sin(a)  cos(a)

SO(2) and a translation ¢ € R2. Since we model the plane as C,
R becomes a multiplication with the complex number cos(«) +
i-sin(a) € 8! and t is an element of C. If a transformation
(R,t) € SE(2) = C x $! is now given, the contour s + c(s) and
the contour s +— R - (¢(s) + t) should describe the same shape.
The shape model that we intend to use will also eliminate these
ambiguities.

Note that we have now two group operations that we like to elimi-
nate. The reparameterization group that acts as $' from the right
hand side on the contour set Imm}($', C) and the rigid body trans-
formation group that acts as SE(2) from the left hand side on the
contour set. Overall, we are therefore interested in the following two
spaces:

Definition 10. The space of arc-length based preshapes is defined
as

€y =SE(2) \ Imm}($', C)

and the space of parameterization free arc-length based shapes is
defined as

8 =€ /8!

Since every shape is parameterized by arc-length, every shape has a
length of exactly 2w. As a result, the presented shape model is also
invariant with respect to rescaling. This takes into account that the
size of a photographed object reflects the distance of the camera to
the object. Hence, there is no relation between the observed size and
the real size of the object. Also, Galilei [37] showed that objects that
are in reality smaller exhibit another corporal structure. Our shape
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concept would therefore still be able to differentiate this change of
size.

It was shown in [51] that the preshape space C; can be understood
as a submanifold of the vector space L%([0;2n],R). Here, we want
to repeat this construction briefly (cf. Figure 3.3):

1. Since ¢ € Immi($!,C) is parameterized by arc-length, its
derivative is a C*-function ¢ : $' — $' which can be en-
coded by a function 6 : [0;27] — R such that the following
lifting equality holds [44]: ¢ (e"*) = ¢"0@) _ If we consider
now # instead of ¢, we obtain a representation that is invariant
under translations in the plane C.

2. To describe C; we have now to get rid of possible rotations in
the plane. If we apply a rotation R = cos(a) + isin(a) on a
curve ¢ with its shape representative 0, we receive the following
equalities:

d o) i if(x) : i

E[R-c(s)]:e d(s)=¢€e""-¢e , with s = e

—eilato(z))

Hence, a rotation on ¢ acts now as addition on . We can now
fix a possible rotation by demanding for the following equality
to hold:

2w

f(z)dz = 27 (3.5)
0

To choose 272 as constant is quite arbitrary and we could
choose any other constant. But it was chosen in order to
make the function x +— =z feasible. This function is the 6-
representation of the shape “Circle”.
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Figure 3.3: Shape Representation. Contours (15* column), its
first derivatives (2"¢ column) and the f-representation (3'¢ column)
are depicted. Translations of a contour (2"¢ row) are filtered out by
the f-representation while a rotation (34 row) results in a translation
of the #-representation.
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3. Also note that the immersion index of the immersion c is also
reflected by 6 in the following sense:

0(2r) — 0(0) = 27 - ind(c) = 27

Therefore, the #-functions that describe elements of C; are of
the following affine L?-space:

L:={6:10;2n] — R|0(0) = 6(27) + 27/
o) (0) = o) (27) for all k > 0}
4. In order to make sure that 6 really represents the derivative of
a contour, we have to close the loop. This means that we allow

only those 6 functions that describe a closed loop. Therefore,
the following must hold:

(8): IO /02” d$_<§o Z?ﬁzif )

Concluding all these observations, €; can be modeled as follows.

Theorem 2 ([51]). If we define the function ¥ : L — R? via

UL —R?
027r 0(x)dz
0 — 0% cos(f(x))dz | ,
[T sin(0(x))d

@y can be modeled as the submanifold ¥=1(272,0,0) C L C
L?([0; 27], R).

As a consequence, the shape space 87 is like 8§ an orbifold. In the

following section, we will address the problem of finding a shortest
path on submanifolds like €;. This will result in the very prominent
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concept of the so-called shooting method. In the subsequent section,
we will present an alternative method that is much faster than the
shooting method. In fact, this path-shortening method is faster by
a factor of up to 1000 depending on the shapes’ resolution. Addi-
tionally, we will show how the concept of shortest paths in C; can
be extended to find shortest paths in 8;.

3.2 Geodesics on Submanifolds

In this section, we will present the idea of geodesics and the promi-
nent shooting method to compute such a geodesic. In the following,
we will restrict ourselves to submanifolds M that can be described
as a subset of an Euclidean vector space IE like the submanifold €
that is a subset of the Euclidean vector space L?([0;2n],R). Since
such a vector space is equipped with a scalar product (-, -) , we can
compute the length of any smooth path m : [0;1] — E via:

N|=

1
1ength(m):/0 (m/(t), m/(t))2dt (3.6)

In order to find the shortest path between two points x,y € E, often
the minimum of the following energy functional is considered

1
E(m) :/0 (m!(t), m'(t))dt (3.7)

This is because every minimizer of FE(-) is also a minimizer of
length(-). Moreover, the global minimum of E(-) is a shortest path
between x and y which is parameterized uniformally, i.e., H %m*(t)“
is constant:

Theorem 3. If my and m* are global minimizers of length(-) and
E(-) resp., then

1. H%m*(t)H = length(m™)
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2. length(m™*) = length(my)

Proof. First, we observe the following inequality which is derived
from the Cauchy-Schwarz inequality applied to an L2-space:

length(m / Hm - 1dt

<[ Hm’<t>H2]é 1f 12]é _ Blm)

This inequality becomes an equality if and only if the two functions
|m/(t)|]] and 1 are linearly dependent, i.e., if m is parameterized
uniformally.

1. If m* differs from its uniformally parameterized instance m,
we receive:

E(m )% = length(m) = length(m*) < E(m*)%

This is a contradiction to the minimality of m*. Therefore, m*
must already be uniformally parameterized, i.e., H %m* (t)
a such that:

1 d 1
length(m™) = / —m*(t)”dt = / adt =a
o |ldt 0

2. Denoting the uniformally parameterized instance of mg as my,
we receive

I

length(mg) =length(mg) = E(my)
>FE(m )% length(m™) > length(mg)

Since the first and the last expression describe the same value,
every inequality has to be an equality and length(m*) =
length(my). O

29



This theorem shows that in order to find the shortest path between
two elements of the Euclidean space IE, it suffices to minimize the
functional E(-) instead of the functional length(-). Additionally by
optimizing F(-), we obtain a path that is uniformally parameterized.
Especially from an implementation point of view this parameteriza-
tion has an important advantage. Since a path is normally stored in
a discretized version, it comes in very handy that we always obtain
a path that is parameterized uniformally. As a consequence, we are
sure that no range of this path is oversampled.

Now we want to extend this concept of shortest paths on submani-
folds. These are smooth subsets M of an Euclidean space [, e.g., a
sphere or a cylinder in R?. To any point € M of such a subman-
ifold M, we obtain a tangent space, denoted as T, M such that for
any smooth path m : [0; 1] — M, the following holds:

m'(t) € Ty M , for all t € (0;1)

Hence, all possible directions of a path starting in = are stored in
T,M. We assume that the tangent spaces at any base point x are
of the same dimension k£ and we call £ the dimension of the sub-
manifold M. A closed non-intersecting loop in R? is therefore a
one-dimensional submanifold and a sphere is a two-dimensional sub-
manifold. For a more formal introduction to submanifolds and man-
ifolds, we like to refer to [31, 21].

Since every tangent space T, M is a subset of IE, the scalar product
of & can also be applied to vectors in T, M. As a consequence,
the functionals length(-) and E(-) are also defined for paths on a
submanifold. This leads to the following metric on submanifolds

Definition 11. Let M C E be a path-connected submanifold of
an Euclidean space . To two different points x,y € M of this
submanifold, we assign the distance:

distps(x,y) = min length(m) (3.8)

m smooth path,
m(0) =z, m(1) = y
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Figure 3.4: Tangent Space and Exponential Mapping. To
any point p of a manifold M (1% image), a tangent space T,M can be
defined. The exponential mapping maps every straight line in 7}, M
passing through 0 € T, M onto a geodesic on M passing through p
(274 image).

It can be shown that disty/(-, ) is a metric on M and the goal of this
chapter is to compute this distance. The observations of Theorem 3
lead us to the following definition of a geodesic:

Definition 12. Given a submanifold M C E of an Kuclidean space
E, a path m : [0;1] — M is called a geodesic if it fulfills the Euler-
Lagrange equation with respect to the functional E(-).

If M itself is a vector space of dimension k, the Fuler-Lagrange
equation of the functional F is quite simple and results in

0=m"

Here, m' and m” are k-dimensional vector fields along m. But in
the case of a submanifold, only m’ is a k-dimensional vector field,
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ie., m'(t) € T,,yM for every t € (0;1). For m”, this property
does not hold any longer. But we can split m” into a tangential (k-
dimensional) vector field m”*" and a normal vector field m/”™°*. Us-
ing the concept of Lagrangian multipliers, the Fuler-Lagrange equa-
tion for submanifolds becomes:

0= m/l tan

In order to compute a geodesic, an ordinary differential equation
can be solved. In fact, given a starting point x € M and a starting
direction v € T, M, the following differential equation

m(0) =z m/(0) = v m"? (1) =0 (3.9)

is an initial value problem. This problem fulfills the Picard-Lindelof
conditions and has a path m,,: R — M as unique solution. This
leads to the definition of the so-called exponential mapping

exp, : TpyM —M

v =My (1)

While the shooting method used in [51] makes use of the exponential
mapping, the variational method that we will propose in Section 3.3
directly relies on the definition of a geodesic and is computed by
minimizing the energy functional E(-). Our approach has several
advantages over the previously used shooting method:

e First of all, we do not rely on computing the ordinary differen-
tial equation (3.9). As a consequence, our approach turns out
to be much faster than the commonly used shooting method.
Depending on the resolution of the shortest path, i.e., the
amount of intermediate shapes that we compute, we receive
an runtime acceleration of a factor of up to 1000.
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e Since we do not have to approximate the solution of the
ordinary differential equation, the proposed path shortening
method is numerically much more stable. If we approxi-
mate (3.9) linearly like in [51], small errors may be accumu-
lated, so that at the end we do not receive a path which is
parameterized in a purely uniform manner. But for the path
shortening method, the uniform parameterization is according
to Theorem 3 a byproduct of the optimization process. In fact,
errors are always dampened in every iteration step.

e Another important property of the method that we will pro-
pose in Section 3.3 is that it is symmetric in the sense that the
shortest path from x to y is always the same as the shortest
path from y to . From a theoretical point of view this may ap-
ply to every method that tries to compute a geodesic between
two points. But the numerical stability of the shooting method
relies on the curvature of the manifold M at the starting point
x. If this curvature differs at x and y the shortest path from
x may differ from the shortest path starting at y if we use the
shooting method. This restriction does not hold if one would
use the path-shortening method of the following section.

3.3 Path-Shortening Method

In this section, we will present our method of computing a geodesic
between two given points x and y on a submanifold M of an Eu-
clidean space [E. First, we will start with the case that IE is an
arbitrary finite dimensional space. After explaining our method for
this rather general case, we will address the problem of finding a
geodesic in the submanifold C; of preshapes. Finally, we will explain
how a shortest path on the quotient space 81 can be derived from
geodesics on C;. The central idea of this path-shortening method
is to start with an arbitrary z-y-connecting path and subsequently
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Figure 3.5: Path-Shortening Method for a Sphere. Starting
with an arbitrary path on a manifold, the proposed method shortens
the path until it becomes a geodesic.

shortening this path (cf. Figure 3.5). This will be done by applying
a gradient descent method with respect to the functional (3.7).

3.3.1 Geodesics in a Finite Dimensional Space

If M is a submanifold of a finite dimensional vector space, every point
x € M can be encoded by finitely many coordinates. Therefore from
now on, we assume that M is a submanifold of R such that every
point # € M has a representation x = (zg,...,zy—1). In order to
compute a geodesic, we have to encode a path between two points
x,y € M in a discretized manner. Therefore, we assume that a path
m : [0;1] — M is encoded as m* via

7

m? = (m(O) .m (n+1> m(l)) e RV*+2) (3.10)

Such a discrete representation encodes the two boundary of the path
and n intermediate points. For increasing n, we receive a finer dis-
cretization of the path m. Our path-shortening method will start
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with an arbitrary discretized path m® and during the process the
path is altered in a way that the involved energy function E(-) is
reduced by applying a gradient descent approach. As soon as the
method terminates, we obtain a local minimizer of E(-) that de-
scribes a geodesic between x and y. So instead of trusting in the
numerical stability of an exponential mapping computation, we min-
imize F(-) directly.

Let us assume that m® = (z,mq,...,my,y) is such a discretized

path. Since the Fréchet derivative of F(-) is —m” " we have to
alter m® in the direction of the discretized m” ta»
forward and a backward difference scheme, we receive update vectors
for mq,...,m,. For z and y, we get no update vectors. But this is
not necessary, since we want to solve a boundary condition problem
and the points x to y have to be fixed. After all, we want to compute
the shortest path between x and y. For the update vector in question,
we receive

. If we combine a

iy +m; tan
Sm; = (% - mz) (3.11)

To compute dm, we have to eliminate the normal component of the
expression inside of the brackets in (3.11). The observation that we
use to compute this efficiently is (cf. Figure 3.6)

7TM(mZ' + d) =m; = d¥ =0

Here, mps : RY — M describes an orthogonal projection onto the
submanifold M from the surrounding space R and d € R" is a
possible update direction of m;. This observation is only true if d is
small enough. Otherwise it is possible that m; + d will be projected
onto another point on M. For now, we assume that the update
directions will be small enough such that this observation still holds.
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Figure 3.6: A small deformation d from a given preshape m; is or-
thogonal to the tangent space T},,C at this given preshape, iff the
projection of the deformed preshape m; 4+ d onto the preshape man-
ifold € is equal to m;.

By stressing this observation even further, we obtain
7 (mi + d) = mar(my + d™°) (3.12)

This is the key to the path shortening method. Combining equa-
tions (3.11) and (3.12), we get the following update step

M +m; tan

s <mi—1 ;— mi+1)

This results in the proposed path shortening method:

Note that this algorithm uses for most of the time the linear structure
of the surrounding space R™. The only additional function we have
to compute is the projection my; onto the submanifold M. Please
note that it is not clear whether the initial path between z and
y that is computed in Line 2 is parameterized uniformally. But our
variational approach will take care of an online gauge fix and as soon
as the method terminates, we receive a path that has this important
property. In the next section we will show how this method can be
used to compute a geodesic on the submanifold €; of preshapes.
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Algorithm 1 PATH SHORTENING METHOD

Input: Two points z, y of the manifold M C RY and the amount
n € IN of intermediate points.
Output: Geodesic m = (mg---mp41) € RY*(+2) with mg = =
and mp+1 =v.
1: for alli=0,...,n+1do

i

2: misz(x+(y—x)'n+1>
3: end for

4: repeat

50 foralli=1,...,ndo

6: M; =7y (7%“2%71)

7. end for

8 0=y M- m?

9: foralli=1,...,ndo

10: m; = M;

11:  end for
12: until ¢ is small enough
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3.3.2 Geodesics on the Preshape Space

In the previous section, we addressed the problem of finding a
geodesic on a submanifold M that is embedded in the finite dimen-
sional linear space IE. Now, we want to expand this concept to the
more general submanifold €y of preshapes.

The first thing, we have to provide is the projection mapping me, .
Here, we use the approximative projection scheme presented in [51]:

Algorithm 2 APPROXIMATIVE PROJECTION ON THE PRESHAPE
SPACE
Input: f € L?([0;2x])
Output: 6 € C; which is close to f.
1: 0= f
2: while 0 ¢ C; do
OQW 0(x)dx — 272

3 = fo% cos(f(x))dx
57 sin((x))dx
1 %foﬁ sin(6)dx %f% cos(6)dx
4@ J=|- fo% sin(@)dz  — [7 sin(0)%da — % [, " sin(20)dzx
027T cos(f)dz 35 [ sin(20)dx 027T cos(6)?dz
u1
5: ug | = J71r
u3

6:  O(z):=0(x) —up —ugcos(f(x)) — ussin(f(x)).
7: end while

In Line 3, the deviation of 8 from €; is stored in r. If r = 0, 6
must be an element of the preshape space G; because this is how
G1 was modeled in Theorem 2. In every iteration step, 6 is pushed
towards C;. This is done by computing the Jacobian J of ¥ in Line 4
and updating ¢ in Line 6 accordingly. In practice, the method will
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be terminated as soon as € is close enough to €;. So instead of
the condition 6 ¢ €1, we will check for the condition [|r|| > ¢ for a
pre-selected € > 0. In our experiments, we choose ¢ = 1076,

Another problem that we have to solve is that an element of the
linear space L C L?([0;27]) cannot be encoded with finitely many
parameters. Therefore, we also have to discretize the preshapes. To
any preshape 6 € C1, we choose an equidistant discretization 6%

9 = <9(%> 9(27]er> H(ij\\;_l)>> eRY (3.13)

The submanifold €; intersected with this finite dimensional space RY
will be denoted as C’.lA. With the presented discretization scheme, the
problem of finding a shortest path between two preshapes 61,60, € C;
can be reduced to the situation discussed in the last section by look-
ing for a shortest path between 69 and 65 of €2. Hence, Algo-
rithm 1 can be used to find a geodesic between 64 and #5*. In the
next section, we will address the problem of finding a shortest path
between shapes instead of just finding shortest paths between pre-
shapes. Therefore, we have to study some properties of the quotient
81 =C1/Sh

3.3.3 Geodesics on the Shape Space

Knowing how to compute geodesics on €1, we have the major tool
to compute geodesics on the shape space 81. Every element of this
space consists of a whole equivalence class of different preshapes. The
shape class of a preshape 6 will be denoted as [f] and it contains every
preshape that can be created by the group operation of (3.4). Since
this group operation was defined for contours, we have to reformulate
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Figure 3.7: Preshape Orbits. Since any shape can be parame-
terized with differing starting points, it corresponds to a family of
preshapes which form a closed curve on the manifold of preshapes.
Symmetries of a given shape will be reflected by multiple coverings
of this curve. In the case of a circle, this curve of preshapes will
collapse to a single point.

it for f-functions. As a result, we receive

0] ={6alo € [0; 27} (3.14)
0, : [0;27] =R (3.15)
Oz +a) — « Jifr+a<2m
T —
Oz +a—21)— (a—2m) ,ifz+a>2r

The reparameterization 6, is now defined for any a € [0;27]. But
since #y = 0o, we can identify 0 with 27 and thus, we still have a
Sllike group operation. This is because the interval [0, 27] together
with the addition modulo 2r describes the same group as $! C C
together with the multiplication of complex numbers. Therefore, we
will call the group operation (3.15) still an $!-operation. One im-
portant property of this operation is the fact that it is a length-
preserving group operation on C;. This means that if we apply a
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specific reparameterization encoded by a € [0;27] on a whole path
m : [0; 1] — €1, we receive a path of the same length:

Lemma 4 ([51]). Given a smooth path m : [0;1] — C; and an
a € [0;27], another path my, : [0;1] — C1 of same length can be
defined via my(t) := m(t)q.

Because of this lemma, the shortest path between two shapes [0'] €
81 and [#2] € 81 can be computed by looking for the shortest path
between the two orbits [#'] and [#?] that form loops in the preshape
space C1. So the problem of finding a shortest path in the quotient
space &1 could be transformed into a shortest path problem on the
submanifold €;. But this problem can be simplified even further.
Let us assume that the shortest path m between [#'] and [6?] starts
at 0! and ends at 6%. Then according to Lemma 4, m_, is a path
of the same length. But because of

m_a(0) =m(0) o =0s_q=0" m_o(l)=m(l)-o = H%—a

we also find a shortest path from [#1] to [#?] that starts directly at
the preshape #'. Hence, the problem of finding a geodesic between
the shapes [0!] and [#?] can be solved by finding a geodesic between
the preshape 6! € C; and the preshape orbit [#2] C €.

Since our discretization scheme of Algorithm 1 minimizes the pair-
wise quadratic distances of subsequent intermediate preshapes, we
have to extend this concept to the shape orbits. In order to do so,
we have to solve the problem of finding the o € [0; 27] such that the
L?-distance between two discretized preshapes #° and 75 is mini-
mized. The solution of this subproblem will then be used to extend
Line 6 of Algorithm 1 accordingly. Because of the discretization that
we are using, we are looking for the optimal cyclic permutation of
the discretized preshape miA with respect to mz-A_ 1- This can be cal-
culated via Discrete Fourier Transform which can be compute very
efficiently [14]. The function to calculate o € [%27@...,%27@
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Algorithm 3 GEODESICS ON THE SHAPE SPACE
Input: Two preshapes 6,17 € C{ C RV and the amount n € IN of
intermediate preshapes.
Output: Geodesic m = (mg---mp41) € RV*(+2) with my = 6
and my,41 € [1].
1: mog=20
2: foralli=1,...,n+1do
3: mi:’ﬂ'elA <9+(77—(9)-ni1>
4: o = DFT(mi_l, mz)
5: m; = (mi)a

6: end for

7: repeat

8 foralli=1,...,ndo
9: M,; = 7T€1A (%)
10: o = DFT(mi,l, Mz)
11: M; = (Mi)a

12:  end for

136 =Y || Mi —m?

14: foralli=1,...,n+1do
15: m; = M;

16:  end for

17: until ¢ is small enough

given the preshapes 2 and ™ will be denoted as DFT(82,72). As
a result, we receive the Algorithm 3 to find geodesics on the shape
space 81.

Note that this approach is not a purely continuous approach. It is
of course true that the gradient descent step is a classical continuous
technique. Nonetheless, the computation of the Discrete Fourier
Transform depends highly on the discretization size. Hence, the
presented method is a semi-continuous approach.
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3.4 Comparing Different Approaches

In the last section, we proposed a variational method to compute a
geodesic on the shape space 81. In contrast to the shooting method,
we do not need to solve multiple ordinary differential equations in
order to receive such a geodesic. Therefore, it seems reasonable to
assume that the proposed method is much faster than the shooting
method. To substantiate this, we present several tests on shapes that
are publicly available. First of all, we use the SQUID database [68]
that has been provided by the University of Surrey. Additionally, we
use the more recent MPEG7 shape database®. The samples that we
use from these databases are chosen to illustrate the functionality of
the proposed method.

We start our evaluation by showing that the distance function we
used describes the similarity of different shapes better than the re-
gion based L?-distance that we used in Chapter 2. Afterwards, we
will compare the shooting method with the proposed variational
path-shortening method. We show that in contrast to the shooting
method, our method provides symmetric results and we will conclude
this section with a run-time comparison that shows an improvement
of a factor of 1000 depending on the shapes’ resolution.

3.4.1 Contour Based vs. Region Based Approach

First, we will show how the presented method of shape morphing
exhibits a shape metric that is more accurate than the region based
L?-distance used in Chapter 2. To this end, we consider the three
different hands in Figure 3.8. The difference between the first and
the second hand is from a perception point of view negligible. In

3The shape database MPEG7 CE Shape-1 Part B is online available
and can be downloaded at http://www.cis.temple.edu/~latecki/TestData/
mpeg7shapeB.tar.gz
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Figure 3.8: Three hands. In the following, we will compute the
pairwise distances of these three hands. These are samples of the
MPEG?T shape database.

fact, the hands only differ in a slight bending of the thumb. But
these two hands differ somewhat more from the third hand. This is
because for the third hand, the distance between the thumb and the
index finger and the distance between the ring finger and the pinky
is much larger than the respective distances for the first two images.
Hence, we expect the shape distance between the third hand and one
of the first two hands be twice as big as the shape distance between
the first two hands.

In Figure 3.9, we see the result of the region based L?-distance. This
distances is measured as the area of the symmetric difference of two
shape itmages. To compare this distance to the morphing distance,
we minimized the region based distance with respect to rotation and
translation (cf. (2.29)). As you can see, this distance is very sensitive
to local deformations like the bending of the thumb or the stretching
of thumb and pinky.

Computing the geodesic on the shape space 8; via the path shorten-
ing method results in the three morphings of Figure 3.10. For the
first two shapes (first row in Figure 3.10), this morphing looks very
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Figure 3.9: Region based distance. The region based distance is
looking for a rotation and translation such that the area of the sym-
metric difference is minimized. This symmetric difference consists of
the following two components. The first one (green) represents the
region of the first shape that is not a part of the second shape. The
second component (red) is the region of the second shape that is not
part of the first shape

75



b b bl e
IBIBIIBIIIDI
W ¥

Figure 3.10: Morphing paths between three hands. Between
the three hand shapes, there exist three different morphing paths.
The morphing between the first and the second shape (first row)
results in a slight bending of the thumb. For the second and the
third morphing paths, a thickening of the thumb and the pinky is
necessary in order to minimize the geodesic length of the chosen
preshape manifold.
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natural. But if we consider the morphing between the third shape
and either of the first two shapes, this morphing looks less natural.
The thumb and the pinky for example thickens during the morphing.
Hence, the morphing can cope with some restrictions of the region
based L2-distance, but it is still not perfect. On the other hand,
we are only interested in the distance and whether this distance re-
flects the object similarity that humans would perceive. The three
pairwise distances define a triangle in the shape space that can be
isometrically embedded into R?. Doing this, results in two different
triangles, one for the region based distance and one for the morphing
distance.

As you can see in Figure 3.11, the morphing distance results in a
triangle in which the first two shapes are closer to one another than
the third shape. Hence, the morphing based distance results in a
more descriptive triangle than the region based distance. As a result,
we assume that the metric induced by the minimal length of geodesic
based morphing is more descriptive than the mere region based L2-
distance.

3.4.2 Path-Shortening Method vs. Shooting Method
Symmetric Behavior

Now, we like to address the difference between the computation of
the geodesic with respect to the shooting method and with respect
to the proposed path shortening method. In Figure 3.12 the results
of both approaches are shown for the exemplarily morphing from a
seahorse into a starfish. We choose this specific example because the
distance between these two very dissimilar shapes is large. Hence,
the geodesic reflects the structure of the preshape manifold €; more
than the small distance for the hand shapes used in Section 3.4.1.

The first two rows of Figure 3.12 show the result of the shooting
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Figure 3.11: Induced Metrics of Different Shape Spaces.
The pairwise distances of the three hand shapes is represented as
a triangle in the real plane. The left triangle represents the metric
structure of the region based stochastic shape space. The right tri-
angle is shown with respect to the the shape space 81. The metric
structure of 81 detects a higher dissimilarity between the first two
shapes and the third shape.
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Figure 3.12: The Computed Morphing Paths. The morph-
ing of a seahorse towards a star fish is calculated via two different
methods. The green shape symbolizes the initial value of the used
methods - these shapes were not altered. The first two rows show
the results of the shooting method starting at the seahorse (1st row)
and the starfish (2nd row). The variational path-shortening method
(3rd row) fixes both the seahorse and the starfish.
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method whereas the third row shows the geodesic computed with re-
spect to the variational path shortening method. The first row shows
shapes on the morphing path that starts at the seahorse shape and
for the second row the computation started at the starfish shape.
All these morphings are valid geodesics but the calculated align-
ments, i.e., the chosen star fish preshapes are different. This leads
to a self-intersection in the first cases, whereas in the third case, the
tail of the seahorse unrolls in an expected natural manner. This is
due to the different alignments of the target shape. It is easy to
see that the variational method moves the tip of the tail towards
the tip of one of the five star fish extremities. Moreover, the first
two geodesics provide a path length of 5.5447 and 5.5431, whereas
the third geodesic has the length 4.6371. Therefore, the shooting
method does not only get stuck in a local minimum but also it does
not provide for symmetric results. In this example, we used a dis-
cretization of N = 1000 for the preshapes. Therefore, there exist
1000 different alignments for the target preshape. Calculating the
geodesic distance between the preshapes with respect to all of these
1000 alignments, we could confirm that the distance computed by
the wariational path-shortening method represents the global mini-
mum with respect to preshape alignment. Thus, the calculation of
realignments in Line 10 of Algorithm 3 serves the purpose of finding
the minimal distance between two given shapes. Overall, the pro-
posed variational path-shortening methods should be favored over
the commonly used shooting method in order to obtain meaningful
symmetric distances.

Run-time Behavior

In the last test, we showed the superiority of the path-shortening
method over the shooting method with respect to its exactness. Now,
we will show that the path-shortening method is also much faster
than the shooting method.
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Figure 3.13 shows the computation times of the morphings presented
in Figure 3.12. It varies from the computation time in [51] because
we use highly resoluted preshapes and the methods stop only if they
can provide a very accurate result. On the horizontal axis the dis-
cretization resolution of the geodesic is noted. This is the amount
n of intermediate shapes that both methods are using. First of all,
we see that the computation time is not symmetric for the shooting
method. Moreover, the computation time varies by 20 to 30 percent.
This is due to the fact that the shooting method depends highly on
the curvature at the starting shape. Hence, not only the result of
the shooting method but also the computation time is asymmetric.

The variational method on the other hand is symmetric and thus,
the runtime does not depend on the starting shape. In addition, the
calculation time is less than 100 milliseconds in the highly resoluted
case. If we use the same resolution as in [51], the variational method
takes only a few milliseconds. To conclude our observations, the vari-
ational path-shortening method does not only reflect the morphing
induced shape distance in the sense that it provides for symmetric
results. It is also faster and thus computing distances as a length of
geodesic becomes attractive for the Computer Vision field of Shape
Analysis.

3.5 Limitations of Morphings

We saw that shape dissimilarity measured as the geodesic length be-
tween two shapes on the orbifold 8; reflects the perceptional dissim-
ilarity of humans better than a mere region based L?-distance as in
Chapter 2. Nonetheless, it is has its limitations. First of all, we only
computed a geodesic as defined in Definition 12. Such a geodesic
fulfills the Euler-Lagrange equation of the energy functional (3.7).
Thus, it may just be a local minimum. Whether it is a global mini-
mum is not clear at all. As a consequence, we cannot be sure if the

80



proposed method really computes the distance as defined in (3.8).

Another problem that already appeared is due to the chosen rep-
resentation of preshapes. In Figure 3.10, we saw already that the
morphing may not be natural in the way that morphing one hand
into another results in thickening and afterwards shrinking of cer-
tain fingers, e.g., thumb and pinky. This is in fact the result of the
chosen shape representation. The problem of this representation is
depicted in Figure 3.14. In this figure, we show how different points
on the first shape are moved in the plane during their morphing. As
a result, we receive a set of points of either shapes that are set in
correspondence with respect to the morphing. This means that for
every t € [0; 27 the following two points are set in correspondence:

i0o(t) and g = c1(t) = e1®

xr=cp(t)=¢e
where ¢; is a representing curve of a shape and 0; : [0;27] — R is the
respective element of the preshape space €;. Since the curves are

represented by arc-length, for arbitrary s,t € [0;27] the following
holds:

dist(co(s),co(t)) = |s — t| = dist(c1(s), c1(t))

where dist(+, -) denotes the distance on the specific contour. Because
of this distance preserving property, we obtain a sort of contour-
based rigidity. If we choose one specific correspondence between
points of different shapes, all correspondences of one contour with
respect to the other is already defined. For the example of the two
hands on the left hand side in Figure 3.14, this works quite well.
But for the toy example on the right hand side of this figure, the
restriction of this rigidity comes to light.
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While for the region based L?-distance of Chapter 2 a rigidity of
the whole shape emerged (cf. Figure 3.9), we are here confronted
with only a parameterization based rigidity. In the next chapter, we
will address this problem. Instead of computing a whole morphing,
we will only be interested in finding correspondences between points
of different shapes. This approach is also known as shape matching
since we are looking for points that are similar to one another, i.e.,
points that match.
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Figure 3.13: Run-time for Different Morphing Methods.

The computation time in seconds to calculate geodesics is plotted
against the discretization size of a morphing. The variational method
has two advantages with respect to its computation time. Symme-
try: The geodesic calculation does not depend on the starting shape,
whereas the run-time for the shooting method varies by ca. 25%.
Run-time: The variational method is faster by a factor of 1000.
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Figure 3.14: Point Correspondences for Shape Morphing.
A morphing transforms one shape into another. Thus, every point x
of the first shape is moved via this morphing onto a point y of the
second shape. These paths are shown for some chosen points. For
the two hands, these correspondences x < y reflect a certain local
stmilarity. For the shapes on the right hand side, this similarity does
not exist any more.
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Chapter 4

Shape Matching

In the previous chapters, we introduced two different methods to
measure the dissimilarity of shapes. This resulted in defining a met-
ric d(+,-) that assigns a non-negative distance to an arbitrary pair of
shapes. In this chapter, we will make use of another distance func-
tion. It differs from the previous distance function in the sense that
it is not a metric any more. Instead it is a relaxed version of a met-
ric in the sense that the triangle inequality of Definition 2 does not
hold any longer. Such a concept is known as a pseudo-metric and has
already been studied in the form of region-based L?-distances. Espe-
cially for level set approaches, pseudo-metrics have been successfully
applied [28].

In order to define this new distance function, we consider the prob-
lem of shape matching which is very popular in Computer Vision in
order to classify a selection of different shapes. Like in the preced-
ing chapters, we still represent a shape as a mapping that is defined
over the circle $'. The main advantage over the concepts described
above is that the invariance with respect to translation, rotation or
scaling will be directly incorporated into the description of shapes.
Hence, we do not have to consider orbits with respect to some group
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operations. In practice, this means that we use certain features that
describe the local appearance of every contour point. Instead of rep-
resenting a shape as a sequence of planar points, it is now modeled
as a sequence of feature values. A very prominent feature is the
curvature. This feature has certain advantages over other features.
First of all, it is easy to compute and secondly it only depends on
a small neighborhood of a given curve point. Thus, areas of the
shape that are further away from a specific point do not disturb the
computation of the curvature at this point.

This chapter is organized as follows. In Section 4.1, we address the
problem of shape matching with respect to an arbitrary preselected
feature. There we recapitulate the development of shape matching
and explain our approach which is an important extension of the
work of Sebastian et al. [85] in the sense that our approach is invari-
ant with respect to re-parameterization. A closely related approach
has been first introduced by Tagare [90], but the model of Tagare is
difficult to handle since instead of a matching function, Tagare used
a matching relation that in general can neither be represented as a
matching function from the first shape onto the second shape nor
vice versa.

In Section 4.2, we present a collection of different features. Espe-
cially, we present a method of computing the curvature via an in-
tegration process. As a result, the presented method to compute a
curvature is numerically much more stable than classical approaches
which involve the computation of the second derivative. In Sec-
tion 4.4, we present the classical method of Dynamical Time Warp-
ing (DTW) and the drawbacks of this specific method which results
for example in cubic runtime with respect to the input size. In or-
der to reduce the runtime, we present two different methods in the
succeeding sections.

In Section 4.4.1 we present a very rapid DTW approach which to
our knowledge is the fastest DTW based method and in Section 4.5
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Figure 4.1: Shape Matching. Left hand side: Matching two
shapes amounts to computing a correspondence between pairs of
points on both shapes. Right hand side: Instead of looking for a
mapping M : €, — Cq, a matching m : $! — $' is defined on the
parameterization domains.

the problem is cast a graph cut problem. In Section 4.6, we provide
two different tests on publicly available databases.

4.1 Pseudo-Metrical Shape Spaces

The problem of finding a match between two different sequences of
data has a rather long history in Computer Science. A very classic
approach is the finding of a substring in a given text string. But be-
sides these exact matchings, the looking for approximate matchings
has also become an import task. One of the first works addressing
this problem was [97]. Here a metric on the set of string characters
was assigned to model errors that may occur during the input of
the search string. To find this elastic match, dynamic programming
techniques were applied. This technique has a long tradition in the
fields of string alignment, speech recognition, stereopsis and hand-
writing recognition [4, 55]. In [22], this concept was first applied
to the matching of shapes. To this end, we assume that a shape is
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represented as a closed loop in a preselected feature space F which
is equipped with a metric d(-,-). F can be any metric space but in
practice, F is some Euclidean space like R or RY. In order to com-
pute the similarity of different shapes efficiently, we assume that the
metric d of F can be computed very rapidly. Further on, we assume
that transforming an arbitrary curve ¢ : 8 — C into the feature
loop f : ' — F can be done easily. Examples of such features will
be presented in Section 4.2. For now, we want to define the general
concept of feature based shapes that differ from the shape concept
of the previous sections in the sense that we do not need any group
operation in order to abstract from the contour:

Definition 13. A metrical space (F,d) equipped with a mapping F' :
Imm(St, C) — Map($!, F) is called a feature space and the mapping
Fis called its feature transformation. Further on, we call F' invariant
with respect to the group SE(2) of rigid body transformations if for
any curve ¢ € Imm($!, C), rotation R € C and translation T € C,
the following holds

Fle()]

FIR-c()+T] (4.1)

From now on, we assume that we deal with a preselected feature
space (F,d, F') such that F' is invariant with respect to the group
SE(2) of rigid body transformations. Besides rigid body motions,
other shape transformations are possible. In this chapter, we want
to detect local stretching or contraction. Hence, we are looking for a
direct correspondence mapping which maps the points of one shape
to the correspondent points of the other shape. Since the points of
a shape form an arbitrary subset of the plane C, it is easier to find
the correspondence directly on the parameterization domain $* (cf.
Figure 4.1).

To avoid self-occlusions during the matching process, a matching
can be modeled via an orientation-preserving diffeomorphism m :
8! — $! that maps points of the first parameterization domain to the
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Figure 4.2: Matching Loop. Matching points on either of two
shapes is equivalent to a cyclic path on a torus. If two curves ¢
and c¢; are both parameterized over a circle. The torus represents all
possible correspondences. The graph I'(m) of a matching m : $' —
$! describes a loop (blue) that covers both parameterization spaces
(horizontal and vertical red loops) exactly once. In this figure the
matching loop of the matching m(s) := s is sketched.

corresponding points of the second parameterization domain. On the
space of these matchings, we will define a functional E : Diff*($!) —
IE{(')F that measures the quality of a matching. The goal of a matching
algorithm is to find the minimum of £ which will mainly measure the
L?-distance of the feature differences. This results in the following
functional:

EY o (m)= | d(fo(s), f1 o m(s))*ds (4.2)
b Sl
This functional was used by Cohen et al. [22]. But it has the dis-
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advantage that it is not symmetric in the sense that the equation
E;{;fg (m) = Ei,fl (m~1) does not hold in general. To overcome this,
Sebastian et al. [85] and Tagare [90] propose different approaches.
Here we follow the concept of Tagare who reformulated the func-
tional (4.2) as a curve integral on a torus. This is possible because
the graph I'(m) of a matching mapping m : $! — $! can be repre-
sented as a closed loop on the product space $' x $! which describes
a torus (cf. Figure 4.2).

To reformulate (4.2) as a line integral has the important advantage
that the resulting energy functional is not only symmetric, but also
independent of the parameterization of I'(m). Hence, we use the
following energy functional:

E%vfl(m):/gld(fo(  from(s)?V/1+m!(s)2ds (4.3)

In this functional, the data term d(fo, f1)? is therefore integrated
along the matching loop s — (s,m(s)). Since we use a line inte-
gral instead of a pure L2-distance like in (4.2), the smoothness term
V1 + m’? is directly coupled to the data term. As a result, we do not
need any additional parameter in (4.3). Using this energy functional,
a distance function for shapes is induced as follows:

Dy (co, c1) = pcin B ), Flen (M) (4.4)

The fact that (4.3) is parameterization invariant with respect to I'(m)
is very important from an implementation point of view, because
we do not have to take care that m or I'(m) is been parameter-
ized in a certain sense. Different parameterizations will lead to the
same energy functional. The freedom in parameterization reduces
the amount of restrictions for designing an efficient algorithm. But

90



Y A

Figure 4.3: Semi-metric. Here, we show an example of three
shapes such that their pairwise distance does not fulfill the triangle
inequality. If we denote the shape of the dog by X and the shapes
of the two faces as Y resp. Z, we obtain the following distances:
Dy(X,Y) = 453, Dg(Y,Z) = 79 and Dg(X,Z) = 547. Obviously,
the triangle inequality Dy(X,Z) < Dy(X,Y) + D4(Y, Z) does not
hold. As feature space F, we used the Inner Shape Context presented
in Section 4.2.2.

this freedom has to be paid off by loosing a property that all the
shape distances presented above had. This is the triangle inequality
which does not hold any more. An example is provided in Figure 4.3.

After presenting the general concept of shape matching, we want
to present two different shape features in the following section. In
Section 4.3, we will then address the problem of solving this problem.
In that section, we will propose purely discrete approaches. These
methods involve the computation of either a shortest path or the
minimal cut in a graph.

4.2 Shape Features

In the last section, we introduced the functional (4.3), which mea-
sures the quality of a matching m. This functional highly depends on
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the preselected feature space (F,d, F'). There exist numerous shape
features which capture the local shape by means of differential or
integral invariants [63], the most commonly considered descriptor
being curvature [69]. In this work, we are not focused on the in-
troduction of new invariants, but rather on the question of how to
efficiently compute a matching given any local shape descriptor.

For the sake of completeness, this section presents certain commonly
used features like the curvature and the Inner Shape Context (ISC).
Curvature is a good feature for shapes but it is not very popular be-
cause normally curvature is computed via a second derivative. This
computation is very sensitive to small noise. In Section 4.2.1 we will
present a novel method to compute the curvature at a certain point
that results in an integration process instead of two differentiation
processes. Hence, it is much more robust than the classical curvature
computation. For the computation of the ISC, we follow the ideas
of [60] which we will briefly present in Section 4.2.2.

4.2.1 Integral Curvature Computation

The shape matching as introduced above relies on local features that
are invariant with respect to translation and rotation. In practice,
these features need to be computed in a robust manner. To this end,
Manay et al. [63] introduced different features that were all obtained
by integration processes and since these features were invariant under
rigid body motions, they were called integral invariants. One of these
integral invariants approximated the curvature by calculating the
intersection of the shape’s interior and a circle of fixed radius r (cf.
Figure 4.4). In contrast to [63], we perform a Taylor approximation
of the invariant which is exact up to the first order. As a consequence,
we obtain a method to compute the curvature robustly by performing
an integration instead of a differentiation scheme.

If we now consider the closed curve ¢ : $¢ — C with its curvature
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Figure 4.4: Curvature calculation.The curvature at any point
along the curve can be estimated from the intersection A, of a ball
with radius r centered at the curve point with the interior of the
shape. R = 1 is the radius of the osculating circle (cf. (4.5)).

function & : $¢ — R. Near the point c(t), the curve ¢ can be de-
scribed via its osculating circle of radius R(t) := ﬁ In fact, the
Greek used this concept to measure the curvature of a curve. The
osculating circle is an second order approximation of ¢. Let us now

consider the set
A (t) ={z € int(c)|||lz —c(t)| <7}

that consists of all points inside the curve ¢ that are also closer to
the curve point ¢(t) than a preselected radius r. Then, the area of
this set A,(t) can be approximated via
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whereas a = /r (—2 R) . Introducing ¢ := sin (—2 R), we receive
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Because of 7 = 2sin(yp), we finally get the simplification
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sin(p)?  sin(p) tyow

72 2

The linear Taylor approximation of the right hand side leads to the

expression § — %gp. Therefore, the curvature x can be approximated

via

R~ — SIn
T

2 (32 3ar;;:§zﬁ> (4.5)

Note that the quadratic approximation error can be reduced by de-
creasing the radius r. Moreover, x = lim,_. % sin (%Tﬂ — 35‘%@))

In our implementation, we used the right hand side of (4.5) to cal-
culate the curvature function of a given curve. In Figure 4.5, the
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Figure 4.5: Gaussian noise.The matching between an original
hand and a hand added with Gaussian noise is visualized. From
left to right the standard deviation is ¢ = 0,0.5,1,3,4. At c =4 a
matching starts to collapse (cf. point 4).

robustness of these feature with respect to high Gaussian noise is
shown. For this test, we started with one contour and added in the
direction of the curve’s normal Gaussian noise of a preselected stan-
dard deviation o. We observed that even at the presence of rather
high Gaussian noise, the matching is quite accurate. The match-
ing starts to collapse for ¢ = 4. But at this point it is difficult to
recognize the represented shape even for a human.

4.2.2 Inner Shape Context

The robustness of the integral feature lies in the fact that we consider
a larger neighborhood of a given contour point. A similar concept
was used by Belongie et al. when they introduced their Shape Con-
text Feature in [5]. It involves the pairwise distances between all
contour points: For every point of a given contour, a histogram is
computed that reflects the shortest paths to all other points of that
contour. Hence to every pair of points, the distance and the angle
with respect to the contour’s tangent is computed and stored in a
preselected histogram. This idea is sketched in the left hand side of
Figure 4.6.
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Figure 4.6: Shape Context. To compute the Shape Contezt,
distances from one point to all the other points of the contour are
stored in a histogram (left hand side). The Interior Shape Context
considers only the shortest paths inside the shape. Hence, it is robust
to articulations like the position of the bunny’s ear.

This feature is very robust but it has also certain disadvantages. One
of them is the fact that articulated shapes exhibit very different fea-
tures. As a consequence, those shapes are difficult to match. But
since articulated shapes are very natural, Ling and Jacobs proposed
in [60] an extension of the original shape context. Instead of the Eu-
clidean distance that was considered in the original shape context,
they only considered paths that are inside of the given shape (cf.
right hand side of Figure 4.6). By considering only these interior
paths, they came up with another shape context — the interior shape
context. Since this feature turned out to handle the matching of dif-
ferent shapes very well, we will use this feature in the following. In
fact, the methods that we will present in Section 4.3 are indepen-
dent of the preselected feature and the focus of the next section is
to present efficient methods for shape matching for every possible
feature space (F,d, F).
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4.3 Discrete Approaches

In the last sections, we addressed the problem of matching two shapes
with respect to a preselected feature space (F,d, F'). The focus of this
section is to minimize the energy functional £ of (4.3). From now on,
we are only interested in purely discrete approaches. Traditionally
the problem of shape matching has been cast into a shortest path
problem through a two-dimensional planar graph, the edge weights
of which incorporate the distance of the local features [65, 39, 3, 2,
38, 57, 93, 85, 73].

This rather general approach is known as Dynamic Time Warping
(DTW) and will be presented in Section 4.4. Another approach that
we first presented in [82] results in finding the minimal cut in a pla-
nar graph. This approach will be presented in Section 4.5. Both
approaches, the DTW approach and the graph cut approach suffers
from a rather high runtime. Thus, it is very costly to compare highly
resoluted shapes. To overcome this drawback, we use the fact that
the underlying graphs of both approaches are planar. This leads to
different methods of reducing the involved runtime significantly by
exploiting this important property of planarity. These methods are
presented in Sections 4.4.1 and 4.5.1. If we want to compare shapes
that are discretized by N feature points, the resulting methods com-
pute the global minimum of F in almost quadratic runtime, i.e. in
O(N?log(N)). In Sections 4.4.2 and 4.5.2 we provide a runtime
comparison of all the presented methods.

4.4 Dynamic Time Warping

Let us assume that two curves cg,c; : $¢ — C and their feature
loops fo, f1 : $' — F with respect to a feature space (F,d, F) are
given. The goal now is to find a matching m : $! — $' that min-
imizes its path length (4.3) on a torus. To simplify this problem,
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let us also assume that we already know an initial matching, namely
m(zg) = x1. This means, we know that fy(xo) should be matched
to fi(x1). If the matching torus of Figure 4.2 is now cut open along
the two red coordinate loops, we obtain a flat area [0;27] x [0; 27]
and the closed matching loop becomes a shortest path from (0,0)
to (2m,2m). Since the problem of finding a shortest path through
a graph has been intensively studied, it makes sense to reformu-
late the problem into a graph theoretical problem. Therefore, we
assume that each of the two feature loops is given as a discretized
sequence of N feature points. This means that the parameterizing
circle $! is discretized equidistantly in zo,...,zx_1. For Simplicity,
we expand this notation such that z; is defined for any ¢ € Z via
Li = ZL(; mod N)-

In order to find the matching m, we have to find a shortest path
within a graph of O(N?) vertices (cf. Figure 4.7) that we will now
construct. The vertices v;;; € V represent a possible match between
fo(z;) and fi(z;) and the integrand of (4.3) at this point is (fo(x;) —
fi1(z))?. Therefore, the weight w of any edge (v;.j, vg,) carries the
value of the path integral along this edge:

k—1
]

R €. £ 1C73) . (fola) = fr(m))*
In order to allow only paths from (0,0) to (2m,27) that represent
a diffeomorphism, only those edges are allowed that sample both
coordinate axis monotonically. As a consequence, we allow only hor-
izontal edges to the right, vertical edges towards the bottom and
diagonal edges that combine a horizontal and a vertical step.

Hence at each point-match, there exist only three different ways to
proceed on the two curves. These three ways are represented by the
following three outgoing edges:

1. One can proceed only on the first contour, which leads to edges
of the form (v;.;,vit1,5),
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2. one can proceed only on the second contour, represented by
edges (vi;j, Vi;j+1) or

3. one can proceed one step on both contours. This is represented
by edges of the form (vj.j, Vit1:541)-

The problem of finding a shortest path from (0,0) to (27, 27) in the
continuous plane can therefore be cast as finding the shortest path
from vg,0 to vn,n in the defined graph G = (V, E,w). This can be
computed very efficiently in O(N?) time steps [97].

This efficient computation relies extremely on the fact that we know
an initial correspondence. This is in general not true. Dy(cg, c1) can
therefore be calculated by finding an initial correspondence (a,0)
and afterwards looking for a path of minimal weighted length from
(a,0) to (a + N, N). Since there is no natural way in finding such
an initial point-match, computing the shortest circular path on the
torus could be carried out with a brute-force method, where first an
arbitrary initial correspondence is chosen, which is used as a starting
point for computing a best matching afterwards. After repeating this
for all possible initial correspondences, the global optimal match is
computed at the cost of O(N?3) computation steps [65, 38]. This can
be achieved by expanding the involved graph to a (N+1)x (2N)-grid
(cf. right hand side of Figure 4.7).

In this section, we will show that the shape matching problem can in
fact be solved in O(N?log(N)). We developed two different methods
that have this property. One method is an extension of [61] that
applies a binary search to the DTW approach. Another approach
is based on a reformulation of the shortest path problem as a graph
cut problem. This will be the focus of Section 4.5.
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Figure 4.7: Shape Matching Graph: Left hand side: Matching
co onto c¢q results in finding a shortest path in a regular graph. To
this end, the node information have to be carried forward to the
right and to the bottom (blank nodes). Right hand side: To find the
initial match, the graph has to be expanded to the right.

4.4.1 Efficient Shortest Cyclic Paths on a Torus

As we have seen in Section 4.4, the minimal matching of planar
shapes can be cast as a problem of finding the shortest path through
a graph. This graph is spanned by the two shapes, where the nodes
of the graph encode the local similarity of respective points on each
contour. While this problem can be solved using Dynamic Time
Warping, the complete search over the initial correspondence leads
to a cubic runtime in the number N of sample points.

We propose an algorithm to determine this shortest cycle which has
provably sub-cubic runtime. In Section 4.4.2, we will see that this
method is faster than all other methods presented in this section. To
the best of our knowledge, there is no algorithm that is faster than
the one we are presenting here.

When searching for the shortest circular path, we can restrict the
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Figure 4.8: Search area. The path search is carried out on a
graph of twice the size of the input matrix. A viable solution has
to start in the top-left blue area and end at a matching node in the
bottom-right blue area. The three allowed directions of the edges
are indicated with the three arrows on the left side.

search w.l.o.g. such that the start-node of the path is of the form
vi.0, ¢ = 0,...,N — 1. The corresponding end-node is then v;yn.N
(see Figure 4.8).

In the description of the algorithm for computing the shortest circu-
lar path, we will apply the following theorem:

Theorem 4. Let G = (V, E,w) with V = {v;}; be a graph and let
P1 = Vi ...V, and pz = vj, ... v, be paths of minimal length. Then
we can state that if p1 and pa have two nodes v, and vg in common,

there is a path py = vy, ... vy, with the same weighted length as p2,
which has a common sub-path v, ~ v, with path pi.

This theorem is based on the principle of minimality for shortest-
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path methods, namely that any sub-path of a minimal path is itself
a minimal path. A direct consequence of this theorem is that for
any two minimum-length paths pi,pa, there exist two paths pf, p)
with the same start and end nodes, which cross at most once. This
property allows us to reduce the search area by constraining it on
each side with a previously computed minimum-cost path.

The algorithm for computing the minimum cost path v;.g ~ vy NN
with unknown ¢ € {0,..., N — 1} proceeds as follows.

e Step 1: The shortest path p; from vg,0 to vy, n is computed
with a standard DTW algorithm. Furthermore, we define the
path p, as a copy of p;, shifted by N elements in the i-direction,
ie., vn,0 ~ van;N. The paths p; and p, are depicted in Fig-
ure 4.8 as the bold path and the dashed path, respectively.
Note that these two paths constitute boundary paths which
reduce the search area from 2N? to at most N2 + 2N nodes.

e Step 2: This step makes use of previously defined left and right
bounding paths p; = v,0 ~ V4NN and p, = V0 ~ VrpNN-
In the first iteration, the paths are taken from the result of
Step 1, so that [ = 0 and » = N. In later iterations, other
bounding paths will be used.

We now compute a shortest-path tree, starting from the middle
node v. = v(4,)/20 at the top side of the graph (Figure 4.9).
In one run of the DTW algorithm, we obtain all shortest paths
to the nodes v,y with k € [+ N,...,r+ N at the bottom side.
Considering Theorem 4, we can limit the DTW computation
to the area between the two bounding paths p;, p;.

e Step 3: If we consider the shortest paths between v. and the
bottom side of the graph, we see that the path v. ~ vy N
obviously has a common sub-path with p;, since both paths
end at the same node. As we consider destination nodes vy, n
with & > [ + N, there is generally a largest & with [ + N <

102



AV (1+r)/2;0
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Figure 4.9: Step 2 and 3. A shortest-path tree rooted at v, =
V(i4r)/2;0 18 computed. The right-most node vy v for which v, ~
v N still has a sub-path with v; is determined. The shortest path
to this node is denoted as pr. Similarly, pr is determined as the
left-most path that still has a sub-path with p,..
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Figure 4.10: Step 4. Given p; and p,, we know that all shortest
circular paths ending in range R include the sub-path v, ~» .
Hence, build a shortest-path tree, rooted at v,, in the indicated
direction on the shaded area. By combining these paths with the sub-
path v, ~~ v, and the shortest-path tree below v,, all circular paths
through the range R can be obtained. The path p/ is the shortest
circular path vy_ .0 ~ v, v, which will be used as a bounding path
in the following recursion step.

k' < (I +7)/2+ N so that the shortest path v, ~» v n still
has a common sub-path with p;. Let us denote the path from
ve to v,y as pr, like it is depicted in Figure 4.9.

Similarly, we can find a smallest ¥” with (I +r)/2 + N <
E" < r + N so that the shortest path v. ~» vpr.n still has
a common sub-path with p,. This defines the shortest path
PR = Ve, ...,V N (cf. Figure 4.9).

e Step 4: According to Theorem 4, any circular path v;o ~»
vign,y with ¢ € R = {l + N,...,k"} includes the common
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sub-path of p, and pr. By denoting the first node of this
sub-path as v, and the last node as v, the common sub-path
of p, and pr is v, ~ ve. If the shortest path from v;o to
vi+N:N Passes through the area bounded by pr and p,, we
have therefore found some initial point-matches of the shape
matching problem, namely any vertex on the path v, ~~ ve.
Hence, this subproblem can be solved in one single DTW step.
Since we have already computed a part of this DTW step, it
suffices to use DTW to compute a shortest-path tree, rooted
at vg, extending to the top-left and bounded by pr and p,. (cf.
Figure 4.10). The shortest-path tree rooted at v, extending
to the bottom-right and bounded by pr and p, was already
computed as part of the shortest-path tree from v, in Step 2.

We now have the shortest-path tree rooted at v, to all nodes
vi.0, ¢ + N € R and the shortest-path tree rooted at v. to all
nodes v;.n, ¢ € R. By considering the sum of the cumulative
costs for pairs of nodes v;., vi4+ N, N, We can identify the shortest
circular path for the node range R. A similar process can be
carried out to find the shortest circular path for the node range
L=A{K;...,l+ N} (cf. Figure 4.10).

Finally, we use the two shortest-path trees like above to ex-
tract the shortest-circular paths p,, = v_no ~ v n and
pg = vpr_N, ~ Vg N. These two paths will constitute new
bounding paths for later processing iterations.

Step 5: The previous step has computed shortest paths for
the subgraph bounded by p; and p] and the subgraph bounded
by p,. and p,. What remains, is the subgraph bounded by p;
and pl.. Since we have already computed the shortest path
Ve;0 ~ Vet N;N denoted as p., we can now divide the remaining
subgraph along p. into two subgraphs, bounded by the paths
p; to pe and p. to p.. Both of these subgraphs can be processed
recursively by restarting the processing at Step 2 for each of
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Figure 4.11: Step 5. All circular paths through the ranges L and
R are already computed. Only the shortest circular paths in the
range in between remain unknown. This range is processed recur-
sively, first processing the graph between pj and p,, and then between

pe and pl.

them. In the recursion, the new p; := p) and p, := p. for the
left subgraph, and p; := p. and p, = p.. for the right subgraph
(Figure 4.11).

Each processing of Step 4 gives up to two candidate shortest circular-
paths. Once the whole range of start nodes is processed, the path
with the minimum-cost path is selected as the global solution.

The question that we like to address now, is how efficient is the
proposed method to state-of-the-art methods. First of all, we will
prove that the worst case complexity of our method is O(N?log(N))
where N is the number of sample points on each shape. Afterwards,
a direct runtime comparison will be provided.
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The proposed method defines a planar graph G = (V, E') on a rectan-
gular grid V = {v;;; | 0 <i < 2N;0 < j < N+1}. We are now look-
ing for a shortest path from v;,0 to v;4 n,n Where 7 varies over the set
{0,..., N—1}. Since our method works recursively, we are especially
interested in any connected subgraph (V/, E’) of G that includes a
certain subset of the two boundaries By := {vg.0,...,un—1,0} at the
top and By := {vn.N,...,van—1;n} at the bottom of the original
graph G.

Lemma 5. Let G' = (V', E’) be a connected subgraph of G contain-
ing exactly b > 1 corresponding boundary elements, i.e.

vio € (V'NBy) & vign.y € (V' N By),

Then the algorithm finds the shortest path connecting an element
vi0 € B1 to its corresponding element vipn,N € Ba. Moreover, for
the number of calculation steps T'(n,b) the following holds:

T(n,b) <2(log(b—1)+1)-(n+N(b-1)) (4.6)
where n := |V'| is the number of vertices in G'.

Proof. Since G’ is a subgraph of G, any shortest path given a start
vertex and a target vertex can be calculated within n calculation
steps using Dynamic Time Warping (DTW). An upper bound for
the runtime 7T'(n, b) is clearly b-n since every DTW run used by our
method computes at least one shortest path from an initial node in
B, towards the corresponding vertex in By. These properties will
be used during the proof. We will prove this lemma by complete
induction over the boundary length b.

Initialization: For b = 2, 3,4, the expression on the right hand side

of (4.6) is always greater than b-n. Since b-n is an upper
bound of the method, (4.6) holds for these cases.
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Induction step: Assuming, we have proven the upper bound for all
boundary lengths o’ fulfilling 4 < o' < b. Now, we like to prove
this upper bound for b itself. First, the algorithm calculates
a shortest path from the central point of the boundary which
takes n calculation steps. By doing so, the graph G is split into
a left and a right subgraph with ny, resp. ng vertices whereas
nrp+nr <n-+2N. If Step 3 and Step 4 has to be applied, an
additional DTW run has to be computed. Overall, we obtain
the following

T(n,b) <T (nL,HTl) +T (nR,HTl) + 2n
log(b—1)) - (np +nr+ N(b—1))+2n
)-(n+N(b+1))+2n

+1)(n+N(Ob+1)) —2(b+1)
+1)(n+ N(b-1))+
)

N DN

log

[\)

IA AN IA
/Q/\/Qr\r\
<)

O]

<0
<2(log(b—1)+1)(n+ N(b—1))
O
With this lemma, the worst case runtime of the proposed matching
algorithm can be characterized as follows.
Theorem 5. The proposed shape matching algorithm has a worst-

case complexity of O(N?log(N)).

Proof. Since G = (V, E) is a subgraph of itself with b = N boundary
elements and n < N2 + 2N vertices, Lemma 5 guarantees that the
shortest path can be calculated in less than

(4N? +2N) - (log(N — 1) + 1)

time steps. O
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4.4.2 Experimental Comparisons

The above bound of O(N?log(N)) on the computation time was
proven based on a worst case analysis. In practice, the computation
time is well below this worst case bound: As discussed in Step 4
of the algorithm, the algorithm cuts away parts of the graph, for
which it can immediately compute the optimal solution. For most
shape comparisons, such cases arise instantly, such that the recursion
terminates after very few iterations.

Figure 4.12 shows a quantitative benchmark test of the proposed
method and three state-of-the-art shape matching algorithms that
we like to present briefly:

Dynamic Time Warping For every possible initial match v;,o, we
look for the shortest path from the point v;.9 to the point v;4 n.0
within the graph G = (V| E). To find a match, we always need
O(N?3) calculation steps.

Branch and Bound This method [1] starts with the initial match-
ing set S := {v0.0,...,v0;n—1}. Then the method looks for the
shortest path within G passing through S. If the shortest path
is a valid matching, i.e. a cycle in the graph G = (V| E), the
method stops. Otherwise, S will be subdivided. The worst
case is still O(N?3), but under certain conditions, an average
case of O(N?1og(N)) is possible [1].

Cyclic String Approach In [62], Maes presented a shape match-
ing approach that essentially uses Step 1, 2 and 5 of our ap-
proach. This approach provides a worst case complexity of
O(N?log(N)).

For two shapes and an increasing discretization level which ranges

between 50 and 1000 points per shape, we compared the runtime
of the described methods. While all algorithms compute the same
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Figure 4.12: Experimental runtime comparison. In contrast
to DTW, Branch-and-Bound and the cyclic-string approach [62], the
proposed method exhibits consistently lower runtimes, in particular
for larger problem sizes.
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matching, the proposed method exhibits consistently lower runtimes,
in particular for larger discretization. Moreover, it offers a more
predictable performance, in the sense that the computation times
exhibit a smaller spread than those of Branch and Bound.

4.5 Shape Matching as Graph Cut Problem

While a shortest path through the shape matching graph can be
computed efficiently using Dynamic Time Warping (DTW), one of
the key drawbacks of this approach is that Dynamic Time Warp-
ing requires a corresponding point pair for initialization. The most
current methods therefore apply DTW for all possible initial corre-
spondences, and then select the minimum of all computed shortest
paths as the distance between the two shapes. We presented one of
the most efficient formulation in Section 4.4.1. But in this method,
too, the search for an initial point-match is done independently of
the search for the complete match. In the following, we want to
overcome this restriction.

Our goal is to develop a method that does not pursue a decou-
pling of the search for the initial match from the search of the
complete match. To this end, we show that shape matching can
be cast as a problem of finding a minimal cut through a network
G = (V,E,c,s,t). Such a network consists of a set of vertices V'
that are connected via oriented edges ¥ C V X V whereas the source
s € V provides only outgoing edges and the sink ¢ € V only in-
coming edges. Every edge e = (u,v) is equipped with a positive
capacity c(e) € R and we call C' C F an st-cut if there is no path
from the source s € V to the sink t € V in the reduced network
Ge = (V,(E\ C),c,s,t). The problem of finding a minimal cut C
can then be formulated as:

A lot of classical Computer Vision problems have recently been ad-

111



Problem 1 MiNiMAL CuT
Input: Graph network G = (V| E, ¢, s, t)
Output: st-Cut C C E which minimizes ) .. c(e)

dressed by graph cut approaches, because they allow to efficiently
solve the underlying labeling or correspondence problems in a glob-
ally optimal manner. In particular, researchers have employed
graph cuts for stereo reconstruction with convex neighborhood po-
tentials [13], for image segmentation [11, 41, 76], for image and video
synthesis [56] or for multi-view reconstruction [88, 96].

We will now show how the shape matching graph G of Section 4.4
can be transformed into a network Z* on which we can apply a
graph cut method in order to solve the shape matching problem.
The graph G = (V, E,w) of the DTW approach comprises a planar
grid structure and in order to find an optimal match, we look for
shortest paths from v;, to v;4n,n for all possible i = 0,..., N — 1.
If we now identify any start-vertex v;.o of the graph with its target-
vertex v;4n.n, the graph G becomes a cylinder and the formerly
shortest path describes a shortest cycle on this cylindrical graph
Z = (Vz,Ez,wz). Note that every such shortest path separates the
two outer boundaries of the graph Z (green edges in Figure 4.13).

It is known that also cylindrical graphs like Z can be embedded
into the plane. Thus, the graph that we obtain after identifying
the corresponding vertices can still be embedded into the plane C.
This means that the edges cut the plane open into different faces
that we pool in the set F. An import property of planar graphs
is that two different edges may not cross each other. Therefore,
every edge e € Ey has a well-defined left face fj(e) € F and a well-
defined right face f.(e) € F. To the cylindrical graph Z, we can
therefore define the dual graph Z* := (F, E},w}) by introducing
dual edges e* := (fi(e), fr(e)) which connect the left with the right
face of an edge. To every dual edge e* we canonically assign the
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Figure 4.13: Dual Graph. A matching path in G (left hand
side) describes a cycle on the cylinder Z (right hand side). Z is
constructed by identifying the vertices along the red edges. The
green edges form the boundaries of Z. Cycles in Z are equivalent to
S — T-cuts in the dual cylinder Z* defined by the dashed edges.

weight w¥,(e*) := wz(e). Additionally, the two faces that are formed
by the outer boundaries of the cylinder Z will be denoted as source
S and sink T (cf. Figure 4.13).

Interestingly, Whitney showed in [99] that for any planar graph Z,
there is a one-to-one relationship between cycles on Z and cuts in
the dual graph Z*. Therefore, the value of a minimal edge cut will
be Dg(fo, f1)? for given feature loops fy and fi. Mathematically,
this can be summarized in the following theorem.

Theorem 6. Let fo and fi be two feature loops with respect to a
feature space (F,d, F'). Then, the following equation holds

D 2= i * :
F(fo, f1) Jin, > wz(e) (4.7)
C* st-cut of Z* e*€C*

To solve this graph cut problem, we can use the method provided
by Boykov and Kolmogorov [13] which works very fast for shape
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Figure 4.14: Runtimes of shape matching. Here, the runtime
of the proposes graph cut method and the commonly known shortest
path method using DTW is plotted against the sampling rate of both
given shapes. We can see that there are cases where the graph cut
method outperforms the DTW method and vice versa.

acquisition problems. In fact, a linear time could be empirically
observed. Unfortunately, this algorithm is not as quick as expected
for the dual shape matching cylinder Z*. In Figure 4.14, we see that
for similar shapes the proposed method outperforms the classical
DTW method. On the other hand, for different shapes the opposite
is the case. Therefore, it looks like the graph cut method handles
similar shapes quite easier than dissimilar shapes. This is because for
similar shapes fo, f1, the distance Dg( fo, f1) and thus the maximum
flow is quite small. In other words, the maximum flow is close to
the initial flow which is zero. Therefore, the amount of augmented
paths that has to be examined by the graph cut algorithm is rather
small and the proposed method works very rapidly in comparison to
the classical DT'W approach.

Overall the observed results are encouraging in the sense that the
coupling of the initial point-match search with the complete match-
search can be cast as a graph cut problem. Nonetheless, the used
graph cut method does not perform very well on this specific graph.
Hence, we have to develop another graph cut method that is bet-
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ter designed for the shape matching graph Z*. In Section 4.5.1 we
will show that by exploiting the planarity of the involved graph, we
are able to provide a very fast graph cut-based method for shape
matching. For example, this method needs only O(N?log(N)) com-
putation steps to compute a shape matching if both involved shapes
are discretized by N points.

4.5.1 Efficient Planar Graph Cuts

In Section 4.5, we saw that the problem of shape matching can be
cast as finding the minimal cut in a graph. In order to do this
efficiently, we want to present a fast graph cut method for planar
graphs. The method that we are about to present is based on the
graph theoretical work of Borradaile and Klein [10, 9] and leads
to an efficient method that we will then apply to shape matching.
In Section 4.5.2, we will provide a runtime test of this method ap-
plied to the shape matching graph Z* of Section 4.5. For now, we
assume that we have to deal with a general planar graph network
G = (V,E,F,fi, fr,c,s,t) where

V' denotes the set of vertices,
E CV xV denotes the set of oriented edges,
F' denotes the set of faces,
fi+ E — F assigns to every edge its left face,
fr: B — F assigns to every edge its right face,
c: B — IRSr assigns to every edge a non-negative capacity,
s € V denotes the source of the network and
t € V denotes the sink of the network.

To date the graph cut algorithm of Boykov and Kolmogorov is con-
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sidered to be the fastest existing algorithm for Computer Vision
applications [13]. Nonetheless, there is no known polynomial upper
bound for the runtime of the algorithm of Boykov and Kolmogorov.
A lot of effort has been put into improving the runtime of maximum
flow computation, by means of flow recycling [53], capacity scaling
[47] or multi-scaling [29]. While these strategies often lead to reduced
computation times, none of them reduces the worst case complex-
ity of the methods that they were built on. The runtime tests of
Section 4.5 (cf. Figure 4.14) demonstrate the lack of a strong upper
bound on the graph cut computation time.

Nonetheless there are methods to compute the minimal cut in prov-
able polynomial runtime. In the following we like to briefly present
the development in this area. A major milestone to solve the general
graph cut problem was the Min-Cut-Max-Flow theorem of Ford and
Fulkerson [36] which stated that the MINIMAL CUT problem is equi-
valent to solving the MaXiMAL FLOw problem. A flow f: F — IR(‘)F
assigns to every edge a non-negative value that is bounded from
above by the capacity function c¢. Additionally, the amount of in-
coming flow to an edge should be identical to the amount of outgoing

flow:
weV\{sth: > fl= )  flo

e=(u,v)€E e=(v,u)eE

The problem of finding the maximal flow can then be cast as:

Problem 2 MaxiMAL FLow
Input: Graph network G = (V| E, ¢, s, t)
Output: Flow f < ¢ maximizing 3, yep f(v,1)

The main idea to solve the MAXIMAL FLOW problem is to start
with a flow f : EF — IR(J{ that assigns 0 to every edge e € E and
then to augment the flow along paths from source to sink on which
none of the involved edges are saturated, i.e., f(e) < c(e). This
augmenting path strategy solves the problem and if we are only using
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shortest paths, the problem can be solved in polynomial time [30].
Nonetheless, this runtime is in general too high.

On the other hand, Weihe showed [98] that an almost linear runtime!

is an upper bound for planar networks. Unfortunately, the proposed
method requires a rather complicated preprocessing step and hence
is not ideally suited for practical implementations. To overcome this
drawback, in [9] a new method was proposed that uses a simpler
preprocessing step. The core idea of this method is to always aug-
ment the leftmost of all paths from source to sink. To this end, we
have to store all leftmost paths towards the sink ¢ in a suitable data
structure, namely in a tree spanning all vertices of the graph. One
way to compute such a tree is the right-first search. This is a depth-
first search of the graph where we always consider the edge that is
situated as right as possible. This simple method produces certain
difficulties if there are clockwise cycles in the graph. Hence, it makes
sense to eliminate these clockwise cycles prior to the computation of
the right-first search tree:

Algorithm 4 Planar Maximal Flow [9]

Input: Planar Graph network G = (V, E, F, f, fr,c, s,1)

Output: Maximal Flow f : E — R"

: Remove from G all clockwise cycles

Initialize the flow f with 0

while there is a non-saturated path from s to ¢t do
saturate the leftmost path from s to ¢

end while

return f

It has been shown that the elimination of clockwise cycles can be
done quite elegantly by computing a shortest path tree through the
dual graph [9]. Therefore, Step 1 of Algorithm 4 is a preprocessing

!By almost, we are referring to the 5—notation7 i.e., nlog(n) = 5(71)
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Figure 4.15: Planar max flow method. Bold and dashed edges
indicate the spanning trees T" and 1™ resp. At every step, an edge d of
the tree T is substituted by an edge e. When the method terminates
(bottom right), neither 7" nor T™* are trees anymore. Moreover, in
T* a circle emerges which describes the minimal cut.
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step which can be computed in O(N log N). A challenging imple-
mentation task is in fact Step 4. Like any augmenting path method,
it (cf. Algorithm 5) maintains a spanning tree T of all vertices V'
to keep track of the augmenting path from source to sink efficiently.
Additionally, the method also handles a spanning tree T™ of all faces
F to support the updating scheme of T'. Since the graph is planar, all
edges which are not in 7" form the tree 7% (cf. Figure 4.15). Lines 8,
9 and 13 of Algorithm 5 take care of this invariant.

Algorithm 5 Implementation of Step 4 [9]
1: Let T be the right-first search tree backward from t.
2: Let T™ be the spanning tree of F' consisting of all edges of £ —1T.
3: repeat
4:  Augment path from s to ¢, update the flow f and let d = (u,v)
the closest edge to ¢ which is saturated.

5. Let (f1, f2) the dual edge d* of d.

6:  Let e* = (fa, f3) be the parent edge of fy in T™.

7. Let e = (x,y) be the primal edge with respect to e*.
8: ™= T*+{(f27f1)}_{(f27f3)}'

9: T :=T—{d} +{e}.

10:  if f; is a descendent of fo within 7* then

11: return f

12 end if

13:  Reverse in T' the edges along the path from z to u.
14: until false

It has been shown [9] that the repeat-loop is repeated at most O(N)
times and that the usage of Dynamic Tree [89] for T and Euler Tour
Tree [45] for T™* results in an O(log N)-runtime for the Lines 4-13.
Hence, the method computes the maximal flow in O(V log N).

Nonetheless, the test for the termination condition (Line 10) is a
bottleneck of Algorithm 5. The theoretical contribution of our work
is to get rid of the Euler Tour Tree and instead maintain 7% by an
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array which stores the parent of each face. Originally, the Euler
Tour Tree was used in order to test Line 10 in O(log N). However,
modification and parent access (Line 6 and 8) of 7™ then take the
same amount of time. We therefore propose an equivalent test on
T instead of T™. We will present this alternative test and prove its
equivalence in Theorem 7. Instead of Lines 10-12, we perform the
test of Algorithm 6.

Algorithm 6 Alternative Termination Condition for T’
10: if there is no path from x to v in T" then

11:  return f

12: end if

Surprisingly, the new test takes no additional time, since the path
from z to w has to be identified in Line 13 anyway. Furthermore,
the T*-related Lines 6 and 8 can now be done in O(1) instead of
O(log N). This runtime reduction makes this method attractive for
shape matching as we will see in Section 4.5.2. The following theorem
proves the correctness and efficiency of the proposed method:

Theorem 7. The proposed method solves the Maximum Flow prob-
lem in O(Nlog N).

Proof. Our approach substitutes Lines 10-12 of Algorithm 5 with
Algorithm 6. Aslong as fi is not a descendant of f5, both approaches
do not differ from one another. This is due to the fact that Line 13
of Algorithm 5 implies the existence of a path from z to u in 7.
Therefore, let us now assume that f; is in fact a descendant of fs.
Then, there exists a path from f; to fs in the dual tree 7. In Line 8
the dual edge (fo, f1) is inserted into T and this data structure
possesses now a counter clockwise circle which encloses the vertex u
(cf. Figure 4.15). Since e* was an edge that left fo, the two vertices
x and y are now outside of the just constructed circle. Therefore,
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Figure 4.16: Runtimes of Shape Matching.The runtime on
the y-axis is measured in seconds and depends on the amount of
shape points of each shape. The proposed method outperforms the
existing method of Boykov and Kolmogorov and is also faster than
Dynamic Programming. The speed-up factor increases with an in-
creasing shape resolution.

Line 10 of Algorithm 6 cannot find a path from z to u and the
proposed method terminates returning the same flow as Algorithm 5.

Finally, we will prove that the extension (Algorithm 6) of the Al-
gorithm 5 does not increase the runtime. The Dynamic Tree [89]
handles Line 13 as follows. Starting from =z, it attaches Dynamic
Paths until either u or the root ¢ of T' is found. If the sink ¢ is found,
we know that there is no path from x to u. Otherwise, a path from
x to u was explicitly found and can be processed in Line 13. In both
cases, the test of Line 10 in Algorithm 6 is natural extension of Line
13 and does not consume any additional computation time. Hence,
the proposed method is always faster than that presented in [9]. O

4.5.2 Efficient Shape Matching via Planar Graph Cuts

As we have seen in Section 4.5, the shape matching problem can be
formulated as finding the minimum cut through the planar graph
network Z*. Because of the planarity of Z*, we can apply the pre-
sented graph cut method of Section 4.5.1. The size of the graph
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is O(N?) and the proposed method runs therefore in O(N?log N).
In Figure 4.16, the runtime for two different examples are given.
As we can see, the presented implementation outperforms the other
methods and provides a speed-up factor of 2-4 with respect to the
the original work of Borradaile. Interestingly, the graph cut ap-
proaches are still faster at the presence of similar shapes. This fact
was already observed in Section 4.5 for the method of Boykov and
Kolmogorov. Nonetheless the method is slower than the efficient
DTW-based method presented in Section 4.4.1. The advantage of
this method lies in its formulation, namely that the shape matching
problem can be cast as a graph cut problem and can be solved effi-
ciently without iterating over possible initial matches. Hopefully, in
the future there will be more efficient methods for graph cuts such
that a graph cut based shape matching is competitive with DTW-
based methods.

4.6 Shape Clustering

In this section, we will study whether the distance function (4.4)
emulates human notion for object similarity. In order to demonstrate
this, we conduct a clustering test on a given database of contours
€1,...,¢n. To this end, we first select a feature space (F,d, F') and
transform the given contours in feature loops fi,..., f, with f; =
F(¢;). Subsequently, we compute the matrix D of pairwise distances

DZ]:D?(flaf])7 VZ,]Zl,,n

Afterwards, we test whether shapes of small pointwise distances look
alike. In order to do this, we used two different annotated databases,
i.e. databases that also provide information which shapes should
be similar to one another. In Section 4.6.1, we used the curvature
feature of Section 4.2.1 and applied it to a subset of the LEMS
database [87]. In Section 4.6.2, we applied the Inner Shape Con-
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Figure 4.17: Clustering. On the left hand side, the pairwise
dissimilarity of six given shapes according to dist(-, -) are color-coded.
On the right hand side, 40 shapes are projected into the Fuclidean
plane based on their pairwise distance. In general, this projection
will not preserve pairwise distances since dist(-,-) is not a metric.
But even this approximation indicates that the distance function
incorporates the human notion of shape similarity.

text [60] to the MPEG7 shape database?. For both databases we
obtained promising results.

4.6.1 LEMS Database

The LEMS [87] database that we want to use here consists of 99 dif-
ferent contours. To cluster this database is considered to be rather
simple. We use this database just to show that the proposed curva-
ture feature of Section 4.2.1 provides good matching results. From
this database, we selected 40 contours which describe the shape
classes hand, human, ray and tool.

To visualize the computed result, we would like to plot the distance

2The shape database MPEG7 CE Shape-1 Part B is online available
and can be downloaded at http://www.cis.temple.edu/~latecki/TestData/
mpeg7shapeB.tar.gz
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result in the real plane. Since the shape space is not a metric, there
is no natural projection from the shape space into the real plane.
Hence, we need an R? approximation of the shape space spanned
by the feature loops f;. To this end, we applied the method of
multi-dimensional scaling [54] that optimally preserves the pairwise
distances, i.e. we computed a set of points

{xl,...,xn € R?, such that |z; —:z:j|2 ~ D?j W,j}.

Figure 4.17 shows these 2D-points with their cluster membership
color-coded. The clear separation of four clusters associated with
the four shape classes indicates that the computed pairwise distances
reproduce the human notion of shape similarity for this data base.
Obviously, it suffices to use the provided distance as a measure of
dissimilarity only. The shape clustering provided by the distance
function coincides exactly with the human classification of shapes.
It is in fact possible to separate human shapes and shapes of tools,
rays and hands from one another.

4.6.2 MPEGT Database

A very challenging shape database is the MPEGT7-database (cf. Fig-
ure 4.18). It consists of 70 different shape classes which are repre-
sented by 20 different shapes each. Some of the retrieving results are
presented in Figure 4.18.

For the so called Bull’s Eye Test, one calculates the 40 closest shapes
to a given shape according to the used distance function. If among
these shapes, there are k shapes of the same class as the query shape,
the retrieval rate is 2—]“0. The mean of all 1400 retrieval rates is the
retrieval rate of the database. As we can see in Table 4.1, the retrieval
rate depends on the discretization size. For 500 shape points of
every shape, the retrieval rate increases up to almost 76%. Besides

this important retrieval rate, we are also interested in how good the
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‘ Shape Points ‘ Bull’s Eye  Worst Case Optimal Classes ‘

100 67.07% 15.5 % 13
200 73.35% 24.5 % 14
300 75.04% 25.7 % 15
400 75.71% 25.0 % 15
500 75.97% 26.7 % 16

Table 4.1: MPEGT7 retrieval rate. Some retrieval rates for the
MPEG?T7 shape database are provided. The results are given with
respect to the used discretization size (15 row). Besides the retrieval
rate of the Bull’s Eye Test (2"¢ row), the average retrieval rate of
the worst performing class (3'¢ row) and the numbers of optimal
performing classes (4*") is given.

retrieval for the most challenging class works. For 100 shape points
the worst average retrieval rate within one class is 15.5% whereas
this values increases to 26.6% for a fine discretization size of 500
shape points. Also the amount of classes that provide for a 100%
retrieval rate with respect to the Bull’s Eye test increases from 13
to 16 classes. Overall, we see that increasing the discretization size
improves the performance of a shape matching in general. For the
Bull’s Eye Test, almost 2 million pairwise shape distances have to
be computed. Hence, efficient shape matching methods like the one
presented in this section are necessary to obtain good retrieval rates.
To perform the Bull’s Eye Test on a standard PC with 500 shape
points, this method took about 84 hours which is considerably faster
than a purely DTW based method.
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Figure 4.18: MPEGT retrieval samples. While for shape
classes that are easily confused, retrieval rates can drop below 50%
(shape class Lizard), the average retrieval rate is above 75%. The
proposed graph cut method allows to substantially accelerate the
required shape distance computation.
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Chapter 5

Conclusion

5.1 Summary

In this work we presented certain efficient methods to solve classi-
cal problems of Shape Analysis. In order to do so, we presented
three different definitions of shape. In Chapter 2, we introduced the
concept of stochastic shapes that assign to every pixel of the image
domain Q C R? the probability that this pixel is part of the pre-
sented object. As a consequence, this shape model is a region-based
model. In the following chapters, we focused on contour-based shape
models.

In Chapter 3, we introduced group operations under which a shape
should be invariant. A shape was then defined as the set of all smooth
curves (parameterized via immersions) divided by these group opera-
tions. Here we differentiated between two different group operations.
The first group operated as a reparameterization group and the other
group modeled rigid body transformation in the image domain. Di-
viding both groups out of the set of smooth curves, we received the
set of shapes. This very technical approach towards the concept of
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shapes has the advantage that every shape can be represented via a
function 6 : [0;27] — R and all these functions form an orbifold on
which we can compute a geodesic. Nonetheless, this model allows
only curves that are parameterized by arc-length. This restriction
was corrected with the shape concept that we used for shape match-
ing.

In Chapter 4 the problem of abstracting from a contour was solved
by using a certain feature space that describes a contour in a way
that this description is invariant with respect to rigid body trans-
formation. Instead of abstracting from the whole set of contours
c: 8! — C, the abstraction happens at every point of the contour.
Every point ¢(s) is described with respect to its neighboring points
such that this local descriptor does not change if a rigid body trans-
formation is applied to the whole curve. We called these shapes
feature loops.

For all these different concepts of shape, we presented methods to
solve classical Computer Vision problems. The focus of this work was
on the efficiency of these methods and in certain cases we could also
prove that the presented methods always provide a global optimal
solution with respect to certain energy functionals.

Shape Acquisition

The problem of acquiring a shape from an image was solved via a
functional that combines classical image segmentation functionals
with shape prior models. As purely image segmentation functionals,
Mumford-Shah like functionals and Geodesic Active Contour like
functionals are possible. We also presented three very classical shape
priors that can be used in order to obtain a functional that is convex
with respect to the used stochastic shape model. This shape model is
as far as we know one of the first convex shape models every designed
for shape prior driven image segmentation.
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The advantage of the presented method over other methods lies in
the fact that we can quickly find the global optimum of the used
functional with respect to possible deformations. This is possible
because the considered functional is a convex functional over the
convex domain of possible shapes.

Secondly, we could benefit from the fact that the considered energy
functional is Lipschitz continuous with respect to rigid body trans-
formations. Thus, a Lipschitz optimization technique could be used
in order to globally optimize the given functional also over possible
rigid body transformations. In general, a Lipschitz optimization is
slower than gradient descent methods. Thus, it makes sense to put
much effort into convexifying the shape model, because afterwards
only an optimizing over a relatively slow space has to be considered,
namely the 3-dimensional space of rigid body transformations.

Knowing that we always find the global optimum of the specified
energy functional helped us to detect occlusions by simply consider-
ing the data term of the involved image segmentation neglecting the
part of the energy functional that controls the shape prior.

Concluding, we were able to globally optimize a quite general vari-
ational approach for image acquisition which is governed by shape
prior and can reliably detect occlusions.

Shape Morphing

In order to solve the problem of shape morphing, we presented a
completely new method of finding a geodesic on an arbitrary sub-
manifold. This quite general approach rejects the commonly used
shooting method and proposes instead a path-shortening method.
This method applies a gradient descent method on an energy func-
tional. Thus, it is not necessary to exactly solve either a partial
differential equation or an ordinary differential equation. Instead we
just shorten a given path until a geodesic is found.
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One important advantage of the path-shortening method is its effi-
ciency. We showed that it is faster by a factor of 1000 depending on
the used resolution. This efficiency boost is in fact not the only ad-
vantage of the proposed method. We also showed that not only the
formulation of the method but also the computed distances on the
considered shape space is symmetric. Thus, it makes sense to com-
pute the induced shape metric with this method in order to obtain
a symmetric distance function.

Shape Matching

For the problem of shape matching we proposed two different
approaches which both resulted in a worst-case complexity of
O(N?1log(N)) if both shapes are given as N discrete, ordered points.
This is an important contribution since a lot of researchers of the
Computer Vision community still use methods that have a worst-
case complexity of O(N?). The first approach that we presented was
based on a DTW graph and the problem that had to be solved was
the shortest path problem. In fact, not only one but N different
paths in a grid of size O(N?) had to be computed. The presented
method is an extension on the method of Maes who proposed to sub-
sequently subdivide the set of initial match-points and the involved
graph. Our method has the advantage that it performs not only
a subdivision of the graph, but it also cuts off certain areas of the
graph and thus, improves the run-time dramatically. As a result, a
shape matching for two shapes that are discretized each by N = 1000
shape-points could be computed in about 400 milliseconds. We also
demonstrated that the proposed method does not only provide the
best worst-case complexity with respect to all previously proposed
methods. It is also in practice much faster than probabilistically
motivated methods like the popular Branch-and-Bound method.

The second approach that we proposed addresses the problem of
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shape matching as a graph cut problem. We could show that this
formulation is equivalent to the shortest path problem in the DTW
graph. But instead of computing multiple shortest paths, we have
only to consider one single graph cut. Thus, the prior separation be-
tween initial point-match and the actual matching computation does
not exist any more for the graph cut framework that we proposed.
This is an important improvement in the area of shape matching.
Nonetheless, this does not mean that shape matching can really be
computed more efficiently than the cubic run-time based DTW based
shape matching.

In order to improve the runtime of the graph cut problem, we pro-
posed a graph cut method that exploits the planarity of the involved
graph. The presented method is an extension of a recent work of
Borradaile and Klein. While the original work used two quite so-
phisticated data structures in order to reduce the run-time for any
planar graph, we were able to drop one of these data structures and
obtained a more efficient method in the process. As a result, also
the graph cut formulation computes the shape matching in sub-cubic
runtime, namely in O(N?log(N)).

Shape Classification

We showed the result of two different shape classification methods,
namely the method of shape clustering and the method of shape re-
trieval in the form of the Bull’'s Eye Test for the challenging MPEG7
shape database. We showed that the retrieval rate depends highly
on the resolution of the shape points. Thus, it is very important to
improve the efficiency of shape matching methods. Instead of just
performing shape matching for 100 shape points, we could compute
the retrieval rate for up to 500 shape points in justifiable time. With
a standard PC, the two million comparison of the MPEG7 database
could be computed within less than four days.
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5.2 Future Work

Shape Acquisition

In this work we showed how the quite simple shape metric for
stochastic shapes, namely the region-based L? distance, can be ef-
ficiently used for shape acquisition. In general, this distance is not
descriptive enough in order to emulate human notion of object recog-
nition. An important extension of the presented shape prior driven
shape acquisition would be the incorporation of more sophisticated
shape dissimilarity measure into shape acquisition. Two of such
measures were presented which were either induced by the problem
of shape morphing or the problem of shape matching. The main
challenge of such an approach lies in the fact, that robust shape
acquisition in normally defined as a region based energy functional
while robust shape distance functions are usually defined as an edge
based energy functional. To combine these two approaches is very
challenging and should be addressed in the future.

Shape Morphing

One important drawback of the presented shape morphing lies in the
fact that arc-length represented shapes were used. We believe that
the good retrieval results that we obtained with shape matching lies
in the flexibility of allowing different parameterization of the shapes.
Note that a matching mapping m : 8 — $' between two shapes
reparametrizes the second shape in order to find a good match with
respect to the first shape. Therefore we think that allowing different
parameterizations for one shape should improve the results we obtain
with shape morphing.
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Shape Matching

We presented two different methods to compute a shape matching be-
tween two shapes represented as loops in a preselected feature space.
Both methods provided for a very low worst-case run-time complex-
ity. Thus, also shapes which are given at a quite high resolution could
be matched in a justifiable time. Future work should be focused on
exploiting the fact that shapes given at a fine discretization can be
matched. One important task would be the improving of features
for these finely represented shapes. Hence, it would make sense to
apply a more sophisticated measure on involved histograms like the
two presented shape contexts. Besides this very classical approach
of shape matching, future work should also be focused on a more
general form of shape matching, namely partial shape matching. In
practice, we often have to deal with occlusion. Future work should
not only focus on detecting this occlusion like we did in Chapter 2,
but also detecting partial occlusion should be addressed in future
work. A major challenge is to automatically divide a shape into its
parts and to perform a shape matching of these parts. To provide a
general framework that solves this problem automatically should be
addressed in the future.

Shape Clustering

While clustering with respect to distance driven methods work quite
well for some shapes, it may fail for other shapes. This is espe-
cially then the case if the involved distance function does not handle
all presented shapes correctly. As a result, outliers with respect
to the involved distance function should be handled more appropri-
ately. Thus not only distances but also stochastic tools like aver-
aging shapes or the computation of a shape covariances should be
addressed in the future.
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