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Summary

When interpreting an image of a given object, humans are abldo
abstract from the presented color information in order to really see
the presented object. This abstraction is also known ashape The
concept of shape is not de ned exactly in Computer Vision andin
this work, we use three di erent forms of these de nitions in order
to acquire and analyze shapes. This work is devoted to impra
the e ciency of methods that solve important applications o f shape
analysis

The most important problem in order to analyze shapes is the pob-
lem of shape acquisition To simplify this very challenging prob-
lem, numerous researchers have incorporated prior knowleg into
the acquisition of shapes. We will present the rst approachto ac-
quire shapes given a certain shape knowledge that computedveays
the global minimum of the involved functional which incorporates
a Mumford-Shah like functional with a certain class of shapepriors
including statistic shape prior and dynamical shape prior.

In order to analyze shapes, it is not only important to acquire shapes,
but also to classify shapes. In this work, we follow the congat of
de ning a distance function that measures the dissimilarity of two
given shapes. There are two di erent ways of obtaining such alis-
tance function that we address in this work. Firstly, we modd the
set of all shapes as a metric space induced by the shortest gaion



an orbifold. The shortest path will provide us with a shape morph-
ing, i.e., a continuous transformation from one shape into andter.
Secondly, we address the problem adhape matchingthat nds corre-

sponding points on two shapes with respect to a preselectefitature.

Our main contribution for the problem of shape morphinglies in
the immense acceleration of the morphing computation. Inseéad of
solving partial resp. ordinary di erential equations , we are able to
solve this problem via a gradient descent approach that subsquently
shortens the length of a path on the given manifold. During ou run-
time test, we observed a run-time acceleration of up to a faatr of
1000.

Shape matchingis a classical discrete problem. If each shape is dis-
cretized by N shape points, most Computer Vision methods needed
a cubic run-time. We will provide two approaches how to redue
this worst-case complexity to O(N 2 log(N)). One approach exploits
the planarity of the involved graph in order to e ciently com pute N
shortest path in a graph of O(N 2) vertices. The other approach com-
putes a minimal cut in a planar graph in O(N log(N)). In order to
make this approach applicable to shape matching, we improw the
run-time of a recently developed graph cut approach by an emjpical
factor of 2{4.
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Chapter 1

Introduction

1.1 Shapes

Describing, measuring and comparing the shape of objects igery
popular in a variety of di erent disciplines. Even one of the rst doc-
umented form of human communication, namely the cave paintings
during the stone age, reduced the described objects to a mowgbro-
matic shap€'. Since then, humans strove to improve the visualization
of the objects that they encountered. But even in modern so@ty,
the shape representation in form of a paper-cutting is stillpresent. It
re ects the fact that every person is able to recognize a give object
even if color information is completely ignored. In fact, it has been
believed that all relevant features of a given object are enzded by
its shape. If we want to teach a computer not only to register hut
to truly see and interpret the world, Shape Analysis is an important
task. In this work, we will discuss di erent aspects of ShapeAnalysis
and present methods that to our knowledge are among the fast in

1The cave painting image and the paper-cutting image of Figur e 1.1 are taken
from wikipedia.org and have been released to the public domain.



Figure 1.1: Shapes and human perception. Humans have al-
ways used shapes to describe their environment.eft: Cave drawing
of the Stone Age. Middle: Paper-cutting from the silhouette of Jo-
hann Wolfgang von Goethdrom the late 18th century. Right: Shape
of the MPEG7-database.

these di erent application areas.

Before analyzing di erent shapes, we have to acquire a shapieom a
given image. This means, we have to distinguish a displayedbject
from its surroundings. In other words, we like to assign to eery
point x of the image domain R? a binary value “(x) telling
whether the point x is part of the object ("(x) = 1) or whether it is
part of the background (" (x) = 0)). This binary labeling problem is
also known as image segmentation because we segment an image
its semantical components. At the end of this segmentation pocess,
we obtain the shape of a given object. Hence, every shape careb
equivalently represented by either a mapping” : !f 0;1gor by a
subsetS of the image domain .

In this work, we assume that the setS that represents a shape
ful lls certain regularity conditions. Therefore, we assume that a
shape can be represented by an open, connected subsef a com-
pact image domain such that the boundary @ Sis a smooth one-
dimensional manifold. Every such setS can therefore be represented

sume that ¢y represents the outer contour of the subsetS. Most



Figure 1.2: Shapes representation. A general shape [eft) can
be represented as multiple contours gecond from the lef). Out of
simplicity, we will often only use the outer contour which is the
most descriptive one Eecond from the righf). Therefore, in fact a
simpli ed shape is considered (ight).

of the approaches, that we will present in this work, are focsed on

contribution to the methods or are merely ignored. This is due to
the observation that for most objects, the outer contour is the most
descriptive one (cf. Figure 1.2).

Note that even the discussed representation is not unique ithe sense
that the shape of an object will not change if we move, rotate o scale
the given object. Depending on the given application, we wil there-
fore introduce a group operation on the set of shape represtations.

A shape will then be described as the equivalence class of a shape
representation with respect to the prede ned group operaton.

One goal of this work is it to describe shapes in a way that the st of
all di erent shapes forms a space equipped with a distance foction.
This means we have to de ne a function that measures the simdrity
of two given shapes. A value close to zero would imply that thewo
given shapes are very similar to one another. On the other haa,
large distances should imply that the two given shapes are ey to
distinguish and therefore, they are very dissimilar to one aother.
The concept of measuring the similarity of two di erent shapes ap-



pears in every chapter of this work and in uences the meaningof
shape similarity.

1.2 Continuous versus Discrete Methods

In this work, we will only address problems that can be formukted
by means of optimizing a given cost functional. This formulaion
can be given as a continuous functional or a discrete functio. As a
consequence, contours can either be represented in a conlious or a
discrete sense. In fact, there are certain problems that cate han-
dled more e ciently if we choose a continuous representatiom. But
there are also problems that bene t from a discrete represetation.

Continuous representations of contours can either be exgdit or im-
plicit. The implicit representation of a contour consists of a di er-
entiable mapping?

"o 'R
that assigns a real value to every point of the image domain . The
contour is then de ned by all points x 2 to which ' assigns the

value zero:
C=1fx2 | (x)=0g

Especially for image segmentation, this representation ames in very
handy. But for other problems, explicit representations are much
easier to handle. The explicit representation of a continuais contour
is given as a di erentiable mapping

c:st!

that assigns a point of the image domain to every point of the
parameterizing circle St. Therefore the contour C is given as
the image of the mappingc.

2 Usually, we assume di erentiability in a weak sense.



Discrete representations are generally given as a set of ldmarks

not only the landmarks but also an ordering of the landmarks &
given. Therefore, a discrete, explicit contour is given as @ n-tuple

Implicit representations can also be used for discrete comurs. In
fact, every method that is implemented on a computer can only
handle a nite number of parameters to represent a contour. The
di erence between continuous and discrete methods lies inafct in
the moment of discretization:

Continuous methods  In a continuous framework, the given prob-
lem is analyzed in a continuous context and thus, also the
proposed method uses continuous operations like di erentl
or integral operators. Only during the implementation a dis-
cretization is used.

Discrete methods In a discrete framework, we assume that we
have to deal with data that is given in a discrete manner. This
discrete data is then handled in a discrete sense. Instead dff-
ferential operators, graph theoretical approaches are nanally
used.

The advantages of minimizing a continuous cost functional & there-
fore:

The developed method is formulated in a very general frame-
work. Therefore, the results that are obtained for ner dis-
cretization converge towards the solution of the continuows
framework. Therefore, discretization artefacts will be reduced
by increasing the discretization size.



Since the cost function that we like to minimize is given as a
continuous, di erentiable function, properties such as cawex-
ity can easily be studied. As a consequence, we can rule out
local minima for convex functions even if we only minimize
these functions via a gradient descent approach.

On the other hand, discrete methods have the following advatages:

The runtime complexity can be given in the size of the input
data. Therefore, we can estimate the maximum amount of time
that the method consumes before providing a result.

We always know that the minimum of a cost function over a
nite set is taken by at least one element of this nite set.
Therefore, the method will always terminate. Besides, we do
not have to handle any form of numerical instabilities.

Overall, both discrete and continuous methods have their bae ts.
In this work, we always use the appropriate approach to solve given
problem as e ciently as possible.

1.3 Related Work

The study of shapes goes back several centuries. Even befattee
existence of digital images or even computers, there have ba studies
about shapes. Galilei [37] studied how the shape of an animal
bone re ects the size of the animal. His observation was thatthe
bones do not only scale with the size of the animal, but that the
shape of the bones changes. The similarity of shapes was studied
in the early 20th century by Thompson [91]. He studied non-rgid
body transformations to transform for example the shape of ae sh
(Diodon) into another (Orthagoriscus). This technique has been
re ned by Bookstein and Kendall [49, 7, 8]. For a more detailel

6



review, we refer to [32]. Recently, shapes have not merely ba
modeled as a set of points, but as a continuous closed line irfhé real
plane. Younes, Mumford and Faugeraset al. worked on region based
shape warping to measure the similarity of shapes [101, 2046 86].
Besides a region based representation, one can also repnaisa shape
as a closed contour. The concept oShape Morphing for this kind
of shapes has been studied by Younes, Mumford and Michor [6&,7,
102] as well as Klassert al. [51, 50].

The computationally less expensive problem ofShape Matchinghas
a long history in Computer Science and was originally in uerced by
the string matching method of Wagner and Fischer [97]. In addtion
to nding an optimal matching between two given strings, they also
studied the induced distance function. This concept has rg been
applied to shape matching by McConnellet al. [65] and has since
then become the core element of most shape matching methods, [
38, 5, 100].

Besides the problem of shape morphing and shape matching, a-
tral problem of Computer Vision has been the one ofshape acqui-
sition. Here, the problem of obtaining an object's shape from a
given image is to be solved. This problem is either known agmage
segmentationor shape denoising A brief review of classical segmen-
tation approaches is presented in the beginning of Chapter 2vith a
particular focus on those methods that can be formulated as @ en-
ergy minimization process. The principle of introducing prior shape
knowledge into Image Segmentation has been studied by sea@rre-
searchers [103, 42, 23, 58]. The focus of our work is set to thveork
by Cremers [24, 25]. The idea of formulating Image Segmentan
and Shape Denoising as a convex functional that can be globl
optimized was pioneered by Charet al. [18].

The problem of shape classi cation with respect to a given détance
function has been studied for a long time [46, 15, 34]. In thisvork,
we will only focus on the problem of unsupervised learning. & more



sophisticated learning techniques, we like to refer to clasical SVM
methods as they are for example presented in [84].

1.4 Contribution

Certain parts of this work have been presented on dierent oca-
sions [79, 82, 83, 80, 27, 81]. The main contribution can be #p
into four di erent components which is re ected by the struc ture
of this work. In Chapter 2 and 3, we study continuous methods 6
shape acquisitionand shape morphing Chapter 4 is focused on dis-
crete methods ofshape matchingand shape clustering Chapter 5
concludes this work.

Shape Acquisition

In Chapter 2, we address the problem of shape prior driven imge
segmentation. Our main contribution is it to formulate this prob-
lem as a minimization problem which can be solved globally. lénce,
we can guarantee that our method nds the global optimum of a
very challenging Computer Vision problem. One key contribution
is the introduction of a new shape model, namely thestochastic
shape model It is a relaxed shape model where we assign to ev-
ery point of the image domain the probability whether this point
is an element of the shape. As a consequence of this relaxedagte
de nition, we can combine the advantages about the shape demis-
ing method by Chan et al. [18] and the dynamical shape prior by
Cremers [24]. By combining convex optimization and Lipschiz op-
timization techniques, we are therefore able to compute theglobal
optimum of a non-convex functional very e ciently.



Shape Morphing

In Chapter 3, we present the problem of shape morphing. To ths
end, every shape is represented as a mapping of the parameigng
circle into the real plane, i.e.,c: St ! R? The set of all shapes
can then be modeled as an orbifold of in nite dimension. Anymor-
phing, namely the continuous transformation from one shape into
another can be represented as a path within this orbifold. Bycom-
puting a geodesic between two di erent shapes, the length okuch
a geodesic de nes a distance between the given shapes. Contpu
ing this distance e ciently is the goal of this chapter. Afte r revis-
ing the classical shooting technique [51, 102], we propose raore
e cient method to compute such a geodesic. Whereas the shoet
ing method relies on solving an ordinary di erential equation, our
method addresses the original problem by applying the gradint de-
scent method to the given energy functional that has to be mir-
mized. As a consequence, our method is numerically much more
stable than the shooting method and by construction, it provides an
equidistant discretization of the geodesic in question. Tomake our
method more accessible to a broader audience, we will also qride
a brief introduction into the relevant di erential-geomet ric concepts,
such as tangential spaces and geodesics.

Shape Matching

In Chapter 4, we propose two computationally inexpensive mehods
to compute the optimal matching, namely the best correspon@nce
function between two di erent shapes. If each of the two shas is
discretized by N shape points, both approaches exhibit a worst-case
complexity of only O(N?logN). This is an important improvement
with respect to the cubic complexity, that the classical Dynamic
Time Warping approach [97, 65] (DTW) possesses. One approach
reformulates the problem as a graph cut problem. Since the uder-



lying graph is planar, we will then present an e cient graph cut
method that makes use of this structure. Our method is based o a
recent work by Borradaile and Klein [10] which is empirically slower
than our method by a factor of about 2. Another method that we
present exploits the graph structure of the Dynamic Time Warping
approach. As a consequence, it improves the runtime signi antly.
To our knowledge, it is the fastest DTW based method for shape
matching. To substantiate this, we also provide an extensie run-
time comparison to other popular shape matching methods. Inthe
last section of this chapter, we make use of the distance futions
computed in Chapter 3 and 4 to merge di erent shapes into a clas
of similar shapes. We show that the shape matching approaclsecan
measure the similarity of di erent shapes quite well.

Conclusion
In Chapter 5, we present a conclusion of this work. Additiondly,

we discuss challenging open questions and give an outlook duature
work.

10



Chapter 2

Shape Acquisition

In this chapter, we address the problem of acquiring shapesrédm
images. An image is a mappingl that assigns a color of a color-
spaceC to every point of a rectangular subset of the real plane
R2:

1: 1 C 2.1)

For gray-scaled imagesC can be identi ed with a convex subset of
R. But in general, C is a convex subset ofR® which re ects the
chosen color model. The focus of this work is not on di erent olor
models. Instead, every presented method can be applied on ¢hone-
dimensional gray-scale color space as well as on a three-dimsional
color space like RGB, HSV or YUV.

Acquiring a shape results in assigning to every pointx of the rect-
angular image domain a binary label "(x) that indicates whether
this point corresponds to a part of the observed object:

11



If (o; 19 (2.2)

1 , x is part of the observed object
0 , otherwise.

X 7!

The central goal of this chapter is to acquire shapes with regect to
prior shape knowledge. This means that we know what the objec
that we seek for will look like. As a consequence, a given setfo
shapes in uences the search for the new shape that we are loiok
for in the given image. This means, that theinput data consists not
only of the given image but also of certain shapes.

To reach this shape acquisition goal, we will provide a briefntroduc-

tion to di erent shape acquisition techniques in Section 21. Here,
we will focus onvariational approaches i.e., on approaches that try
to minimize a given cost functional. In Section 2.2, we will intro-

duce the concept ofstatistic shapeswhich results in a convex shape
space. Hence, vector space based dimension reduction or slastic

modeling can be applied to any collection of statistic shaps. This

leads to aknowledge driven shape acquisitiorthat we will present

in Section 2.3. It is an extension of the work of Cremers [24] hich

results in a non-convex functional. In Section 2.4, we will show how
this functional can be minimized e ciently. Especially, we will show

that we can always guarantee to nd the global optimum.

2.1 Classical Shape Acquisition Methods

The core element of every variational method is the de nition of an
energy functional that measures the performance of a posdiboutput
given the speci c input data. For the problem of shape acquigtion,
we must therefore de ne such an evaluation functional. The asiest
way of evaluating a given shape  of the form (2.2), is to measure

12



the deviation of the color information 1 (x) from a preselected color
model. This can for example be done by assigning unique coler
to foreground and background. So, if we assign to the foregrond
the color and to the background the color , the following energy
functional measures the performance of a given shape

z z

Ecor()=  (1(x)  )?dx+  (I(x) )?dx (2.3)

where
i=fx2 j(x)=ig

Now, the goal is to nd the global minimizer of the energy func-
tional Eqgor- Since the minimizer of this functional is very sensitive
to noise (see also Figure 2.1), researchers have been expegting
with di erent energies and it turned out, that the contour th at sepa-
rates foreground from background is a good descriptor of thavolved
shape and thus should contribute to the energy functional. Kasset
al. [48] ignored in their active contour approach the region inte-
gral (2.3). Instead they considered the image information &ong the
separating contour and penalized additionally the rst and second
derivative of the contour in order to regularize the segmenétion. An-
other approach combined the rst derivative of the contour with the
image information along the contour. This geodesic active contour
approach of Caselleset al. [16] addressed the image segmentation
problem as minimizing the following energy functional:
z

Ecac (C) = . 9(s)idC(s)j (2.4)

In this functional, g(s) is a positive function that depends inversely
proportional on the image's gradient at the points2 C . One of

the major drawbacks of this functional is the fact that the empty set
is the minimizer of this functional. Therefore, other constraints were

13



introduced to guarantee that a possible global minimum proudes a
meaningful shape. For discrete approaches in this area, weowuld
like to refer to the concept of intelligent scissors [70] or to that of
corridor scissors [35].

Independent of this purely edge based approaches, Mumfordnal
Shah [71] proposed in 1989 an approach that was based on (2.3)
Their approach extended the functional (2.3) to a more geneal class
of color models and incorporated an additional term that peralizes
the length of the separating contour. Since we want to focus
the simple color model which assigns a unique color to foregund
and background, we will here only consider the so calleghiecewise-
constant Mumford-Shah functional:
z z

Ews()=  (1(x) )?dx+  (I(x) )%dx+
length(C) (2.5)

where length(C) describes the sum of the lengths of all o- ;-sepa-
rating contours. Note that o, 1 andC are uniquely de ned by the
labeling mapping °. Only is a parameter that can be chosen by
the user. It regulates the length of the shape's boundary coiours.
Since this model is only dependent on one parameter, this maa is
easy to adapt to given input data. But it took about one decadeto
nd a way to solve the induced minimization task

"= argmin Ems(;; ) (2.6)
T If 019

in a continuous sense.

Previously, the discretized version of (2.5) was already kawn in the
80s and Geman and Geman [40] proposed in 1984 a method to solve
this minimization problem via an approach that was based on gnu-
lated annealing. In 1989, Greiget al. [41] reformulated this problem
as a minimum cut problem. Therefore, (2.6) could be computedn

14



Figure 2.1: Segmentation. To retrieve a shape from a given
image (2% frame), we can apply a color model which results in a noisy
shape (29 frame). The geodesic active contourmodel (2.4) can nd
an accurate shape, if we preselect some pixels that are partf ahe
shape (red circle in the 3¢ frame). Without any user interaction, the
Mumford-Shah functional (2.5) can also nd a correct segmentation
(4™ frame).

polynomial runtime. In 2001, Boykov and Kolmogorov presened an
e cient algorithm [12] to compute the minimum cut and this me thod
has since then become a very powerful tool in Computer Vision

At the same time, Chan and Vese proposed one of the rst continous
approaches [19] to solve the continuous functional (2.5) @ a curve
evoluting process. The region separating curveC was modeled via
a signed distance function' :

‘. IR 2.7)

dist(x;C) ,ifx2 o
+dist(x;C) ,ifx2 1

7!

Together with the Heaviside-function H:
H: I' R (2.8)

0 ,ifx O
1 ,ifx>0

X 7!
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the functional (2.5) can be rewritten as
z

Ecv(')=  (1(xX) ) H "X+

() )@ H ")+
kr (H ' (x))kdx (2.9)

Therefore, the problem of image segmentation can be formutad as

minimizing Ecy over the set of all signed distance functions. Using
gradient descent approaches, a minimum of this functional an be

found. But since the signed distance functions do not form a onvex

set, the method can potentially get stuck in a local minimum.

This problem was circumvented by another reformulation of this
problem. In the seminal work of Chan, Esedaylu and Nikolova[18],
the expressionH ' has been replaced by the functioru : !'f 0;1g.
Additionally, the codomain of u was extended to the convex set [0L].
Therefore the Chan-Vese functional (2.9) became

Z
Envw= (1) )? ux)+
(I(x) ) @ u)+
kr u(x)kdx (2.10)

Since the set of all functionsu form a convex set and the functional
Erv is convex, a gradient descent approach leads directly to a gbal
optimum. It may of course be possible that such an optimumu as-
signs to some points of the image domain numbers which are rthier
0 nor 1. But if we threshold u with respect to the value 0.5, we
receive a functionu : !'f 0;1g that represents a shape:

u: If 0;1g

0 ,ifu((x) 05
1 ,ifu(x)> 05

7!

16



The important contribution of [18] was the so called thresholding
theorem that states that u is also a global optimum ofE+y . Hence, a
continuous method to nd the global optimum of (2.5) was found. In
combination with a primal-dual scheme [17], the developed rathod
was competitive to the graph cut methods in the mean of runtime
by using an e cient GPU implementation [95]. Also it was shown,
that the result of this continuous approach is more accuratethan the
graph cut approaches since it inhibits metrication errors p2].

In fact, the thresholding theorem does not depend on the facthat
the image related data terms are quadratic. Moreover, any clor
model for the background and the foreground of an image can be
used to nd the global optimum of the image segmentation prodem

Erv(u) = fi(x) ux)+ag(x) (1 u(x)+
hy (x) kr u(x)kdx (2.11)

Please note thatforf;, g 0, this functional becomes the geodesic
active contour functional. Hence (2.11) covers any hybrid nodel
that involves regional terms and edge terms. The shape acqgsir
tion method that we use in this chapter is an extension of the finc-
tional (2.11). Instead of penalizing the contour's length, we will use
an energy functional that penalizes the deviation of a shapdrom a
preselected shape model. To this end, we will introduce in th next
section a shape model that forms a convex subset in a Hilbertmce.

2.2 Stochastic Shapes

In the following, we introduce the concept of stochastic shapes The
notion of shape fundamentally diers from classical de nitions of
shape like" in (2.2). We replace the hard decision ofa point is part
of the shapeby a relaxed probability associated with each point.
This probability should not be understood as a probability in the
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sense of probabilistic measure theory. It should rather be een as
an application of the fuzzy set theory introduced by Zadeh [D4].
The key contribution of the stochastic shape is to show that his
fuzzy relaxation in the de nition of shape gives rise to a number of
advantages in the context of shape modeling and shape infenee.
Most prominently it enables us to acquire shapes from imagesn
a globally optimal manner under the consideration of prior ape
knowledge. So let us start by formally de ning the stochastic shape:

De nition 1  (Stochastic Shape) An L 2-function
g: ! [0;1] (2.12)

which assigns to any pointx 2 a probability g(x) that x is part of
the shape (cf. Figure 2.2, left side) is called astochastic shape The
space of all stochastic shapes will be denoted b§.

In contrast to explicit representations, the above implicit represen-
tation does not depend on a speci ¢ choice of parameterizatin. In
contrast to alternative implicit representations of shape such as the
signed distance function of (2.7) or alternative represerdtions [33],
the value of g has a clear probabilistic interpretation. Also, there are
no redundancies encoded ig. In contrast, a signed distance function
' must almost everywhere ful Il the Eikonal equation kr ' k=1. As
a consequence, the set of all signed distance functions is th@onvex.
The setQ on the other hand forms a convex subset of &lilbert space:

Proposition 1. The stochastic shape spac® forms a convex subset
of the Hilbert Space L?( ;R). This Hilbert Space is equipped with
the scalar product

Z
hp; d = p(x) g(x)dx (2.13)
The induced norm will be denoted
z :
kak :=  q(x)2dx (2.14)
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Figure 2.2: A relaxed notion of shape. In this chapter, we
introduce a novel de nition of shapeas a functionq: ! [0;1]
specifying the probability that a pixel x 2 R? is part of the shape
(left). In contrast to the commonly used signed distance repesen-
tation (right), the resulting image segmentation with stat istic shape
priors corresponds to the minimization of convex functionds over
convex domains.

Proof. SinceQ is the set of all L? functions that map to [0 ;1], it
is obviously a subset ofL?( ;R). For the proof of convexity, assume
p; g2 Q. Now, we consider the convex combinatiorg := p+(1 )q
of these two shapes by choosing a speci ¢ 2 [0; 1]. Then, we have:

gx)= px)+@ Hax) gx)= px)+@ )qx)
0+(1 ) 0=0 1+(1 ) 1=1
O

Note that while Qis not a Hilbert space likeL?( ;R?), Qis nonethe-
less a metric space. This means that the distance function

Z 1
dos; o) = kar k= (t(X) Gp(x))%dx
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is a metric:

De nition 2 (Metric) . Given aspaceX, afunctiond: X X ! Rj
is a metric if it ful lls the following properties:

8x;y2 X @ dix;y)=0, x=y (Positive De niteness)
8x;y 2 X : d(x;y) =d(y; x) (Symmetry)
8x;y;z2 X : d(x;z) d(x;y)+ d(y;z) (Triangle Inequality)

The convexity of Q shown in Proposition 1 has an important tech-
nical consequence for statistic shape modeling and shapeference.
Especially, we can apply classical dimension reduction or wdel t-
ting methods to shapes.

But also semantically, the convexity gives rise to some impdant
properties. The convexity of the shape spaceQ implies that any
convex combination of a set

of training shapes will correspond to a valid shape. In partcular,
the mean

1 X

N G (x)

i=1

is a function which assigns to each pointx 2 the average of all
probabilities. Similarly, statistic notions such as covariance matrices
and eigenmodescan be easily de ned.

De nition 3  (Eigenmodes) The entries of the covariance matrix
=( ij)ij=1;;n are de ned via the scalar product (2.13):
Z

= 5qp = (@x) ()G (x)  (x)dx
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Let v; 2 RN be the eigenvectors of with respect to the eigenvalue
i 2 R such that 1 R n - Then, the following functions
LN PR

X!
)= )y () () (2.15)

i=1

are the eigenmodes of .

Note that the eigenmodes are not necessarily stochastic shas. They
just de ne in what way most of the input shapes in  deviate from
their mean . In particular, the eigenmodes help to reduce the in -
nite dimensionality of Q to a convex subset of nite dimension that
still encodes the relevant information of .

De nition 4  (Finite subspace of Q). The subspace of stochastic
shapes spanned by the rstn N eigenmodesf i;:::; nhg of the
set is

ni= q = + i i q(x)2[01] (2.16)
i=1

which is a subset of the nite dimensional, a ne space
( )
bn = q = + i 2 R" (2.17)

We will now show that not only Q but also the set of all parameters
in (2.16) is convex. This is a very important property for the image
acquisition method that we will present in the next section.

Lemma 1. The set , in (2.16) is convex.
Proof. For any n N, the set | is the intersection of the ane

spaceb, with the convex spaceQ. Since both sets are convex, their
intersection is also convex which proves this lemma. O
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LA LAAAR

Projection on the subspace ;

AARLEIAARA

Projection on the subspace »

SO SNERDPY

Projection on the subspace 3

SN NERFUY

Projection on the subspace 4

SENNERFPY

Projection on the subspace s

EESEERPED

Original Sequence

Figure 2.3: Dimension Reduction. A walking sequence (last

5" row). Even at a one-dimensional projection the main informaion
about walking is recovered.
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The set of training shapes can thus be approximated by nested
low-dimensional spaces:

fg= o 1 n N Q

The elements of a space , are compactly represented by vectors
2 R" of eigencoe cients, modeling the shape

X0
q= + =t i(x) i (2.18)
i=1
We will now show that the set of eigencoe cients that describe
stochastic shapes form also a convex set:

Lemma 2. The setA, := f 2 R"jg 2 Qg of all feasible is
convex.

Proof. Let ;; » betwo elements ofA, and 2 [0;1]. Then we have
to prove that the shape representing vector = 1+ (1 ) 2 s
also feasible, i.e., 2 Ap:

q= + =+ 1+ ) 2
(+ +@ )+ 2
qg.,+@ )g,2Q

O

So overall, we have de ned the stochastic shape spac@and we could

not only show that this shape space is convex. In addition we lso

introduced to every subset Q, a meaningful notion of eigenmodes

which de ne a convex, low-dimensional subspace ,,. Finally, we

showed that the coordinate systemA, of this subspace is convex

and we have a natural, a ne mapping between A, and |, namely
7+
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EESEERPED

Original Sequence

SENNERFPY

Stochastic Shape Space

RArRLEAARA

Space of Signed Distance Functions

Figure 2.4. Dimension Reductions. If we perform a dimension
reduction with respect to the stochastic shape model (¢ row), we
receive better results than for the dimension reduction wit respect
to the signed distance functions (3% row).

In Figure 2.3, a walking sequence Q and its orthogonal pro-

jection onto 1;:::; s is shown. One can see that even the ve-
dimensional space s provides a good approximation of the relevant
information encoded in . In Figure 2.4, the projection results for

the stochastic shape model is compared to a projection on a sipe
space based on the signed distance functions [24]. Espetyain the

third and seventh frame, we can see that the stochastic shapsub-

space encodes the details of more accurately than the shape model
based on signed distance functions. In the next section, we ilWuse

this representation to incorporate stochastic shape priorinto shape
acquisition.
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2.3 Knowledge-driven Shape Acquisition

The general shape acquisition functional (2.11) can retriee a shape
from an image under the assumption that the shown object can asily
be distinguished by the color information that the image provides.
Unfortunately, that is not always true. Due to clutter or occ lusions,
there are certain small regions in the image to which the prdearned
color model of (2.11) does not t any more. On the other side,
humans are able to detect a person even when it is raining or swing.

We believe that this is possible because humans are well anaf a
person's shape or that they know how people normally walk. Hece,
we are able to Iter out disturbing information and thus, we can

focus on the visual task that we like to solve. In Computer Vison

this situation has been modeled by introducing shape prior mto the

segmentation [58, 94, 78, 24, 25].

In this section, we will propose a method to retrieve a stochatic
shape from an image applying three di erent concepts of shap priors
to the proposed stochastic shape model of Section 2.2. The meepts
that we apply to the acquisition of stochastic shapes are the&oncepts
of static uniform shape priors [94], static Gaussian shape priors[78]
and dynamical shape prior [24]. To this end, we assume that a
training set = fou;:::;gvg  Q of known shapes is given. This
training set will be used to de ne di erent shape priors. All these
shape priors have in common that we only consider the rstn < N
eigenmodes 1;:::; n of this training set as de ned in (2.15). As
in Section 2.2, we denote the convex, nite dimensional subst of Q
spanned by then eigenmodes as,, e, and the space of all possible
eigencoe cients is denoted asA,. Also, we use the notationq to
denote the shape of , that is been encoded by 2 A, via (2.18).

To retrieve a shape from an image using the shape prior, we lkto
minimize a cost function that penalizes the deviation from the color
model like in (2.11). At the same time a deviation from the shge
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prior should also be penalized. Therefore, we like to mininde a cost
function of the following very general form:

E( )= Etv(q)+ E shapel ): (2.19)

Here, Eshape IS @ cost function that penalizes the deviation of a given
shapeq from the expected shape and is a parameter that weights
the importance of the chosen shape prior. For the cost functinal

Erv we have to model the color distribution for the foreground ard

background via functions f and g respectively. Meaningful choices
of f and g for shape acquisition are given by:

f = logpoy(l) g= logpug(l) (2.20)

where pop and pyg represent the color histograms (probabilities) of
object and background [77]. Since the shape prior acts as ratarizer,
we do not need the edge ternh of (2.11) any more and we seh 0.

For the shape energyE shape in (2.19), we consider one of the follow-
ing three statistic shape priors:

1. Static uniform shape priors The distribution of training
shapes is assumed to be uniform within the eigenmode space
A,. Such a model was introduced for level set functions in
[94] and it corresponds to settingEspape = 0 in (2.19). One
may argue that this leads to a function that does not dier
from (2.11) and will therefore lead to the same solution. Ths
is not true since the set of feasible solutions is reduced. Ne
that we optimize over 2 A,. Therefore, we consider only
shapes that can be represented via the rstn eigenmodes of .
Hence, this is in fact a shape prior even if we do not alter the
corresponding energy function.

2. Static Gaussian shape priors: The distribution of training
shapes is assumed to be Gaussian. By using the covariance
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matrix computed in Section 2.2, we receive a Mahalanobis
type energy of the following form:

Eshape( )= ; 1 (2.21)

A related model was proposed for level set functions in [78].
It has an important advantages over the uniform shape prior,
because it penalizes the deviation of the rst few eigenmode
more than the deviation from the remaining eigenmodes. As a
consequence the relevance of the rst few eigenmodes is ermgeh
sized more adequately by this model than the uniform shape
model. Since the cut o after the nth eigenmode leads to a
virtual in nite penalization of the eigenmodes +1;:::; N
the Gaussian shape prior is more sensitive to the choice of th
parameter n. It should therefore be chosen carefully.

3. Dynamical shape priors: The evolution of shape vectors is
modeled by a linear dynamical system. This sophisticated
shape prior can only be used if we have to deal with a whole
collection of images. Therefore it is well suited for the prdolem
of object tracking in videos. Since the stochastic shapes fm
a convex set, we can train a Markov chain model of the form

X«
t = At i+ (2.22)
i=1

model the linear dependency of the current eigencoe cient
with respect to previous eigencoe cients ¢ 1;::: { k. K is
also known as the size of the Markov chain model. Such a
model can be learned by assuming that the elements of the
shape prior are given in a ordered manner such that the se-

eled via the chain model (2.22). Then, every shapey 2
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can be modeled by an eigencoe cient vector ; 2 A,. These
vectors can give rise to the autoregressive model parameter

in [72]. This model now gives rise to the following shape engy
at a certain time t:

Eshape( ) = vi; o v (2.23)

P
wherev; = :‘:1 Ai  ; is the prediction by the Markov chain

images. A related model for level set functions was introdued
in [24]. Since level set functions do not form a convex set, th
resulting shape priorsv; have to be projected back onto the
space of feasible level set functions. For the statistic slhze
priors this is not necessary any more.

In order to simplify the models of (2.22) as much as possibleye
assumed that the given shapes} are transformed in a way that the
pairwise distance of consecutive shapes is minimized. Inbér words,
we compute the following minimum, prior to the model learning

1

i =argmin g G 1
2SEQ)
=argmin  g( X) G 1(x) “dx
2SE(2)
and every shapeq is replaced by g ( 1 i(x)). As a conse-

guence, the learned shapes are free from possible rigid bodrans-
formations. Hence the autoregressive model represents gnthe con-
tinuous deformation of shapes. This makes model learning nh
easier and our model is thus independent from translation orrota-
tion which may be in uenced by camera movements.

For the shape acquisition on the other hand, the transformatons
have to be put back into play. Now, we have to consider any posble
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transformation of 2 SE(2) in order to nd the exact shape in the
currentimage. To this end, we de ne an energy functionE (; ) that
depends on shape parameters 2 A, as well as the transformation
parameter 2 SE(2) modeling rigid body motions:

E(; )=Erv(@ (x))+ E shapel ) (2.24)
with Ety de ned according to (2.11) and with Eghape de ned either
as 0 or de ned according to (2.21) or (2.23).

Even though the resulting function E is not a convex function, we
will show in the next section how we can guarantee to nd the gbbal
optimum by combining a convex optimization technique with the
concept of Lipschitz optimization.

2.4 Global Optimization

In this section, we will show how to globally optimize the non-convex
function (2.24).

In order to do so, we use a separation of variables:
mMNE(; )=min minE(; )

Thus, we have to apply two optimization methods. The rst one
computes the global optimum of E(; ) with respect to . This
global optimum will then be dependent on . As a consequence, we
have to compute the global optimum with respect to of a function
E thatis induced by this rst optimization process:

E :SE@2)! R (2.25)
7" min E(; )
2An
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In the next section, we will show how to computeE by applying
a convex optimization technique. In the subsequent sectionE is
optimized via a Lipschitz optimization approach.

2.4.1 Convex Optimization for Deformations

In Section 2.4.2, we will show that E can be optimized with a
Lipschitz optimization technique. This approach only depends on
evaluating E at some discrete points. Nonetheless, it will up to a
preselected error" always compute the global optimum of the con-
tinuous function. This optimization approach depends highy on the

accurateness of computinge ( ). Thus, we have to show rst that

E can be computed very e ciently. In fact, we show that com-

puting E () results in optimizing a convex function over a convex
domain:

Proposition 2.  To evaluateE at a given rigid body transformation
2 SE(2) results in optimizing a convex function over a convex
domain.

Proof. Due to Lemma 2 we know that the optimization domain A, of
feasible values forms a convex set. Therefore, we need to prove that
the optimization involved in evaluating the function E is convex in
2 A, for any choice of data term and any of the three shape
priors discussed in Section 2.3. The zero function that desibes
the uniform shape prior is obviously convex. For the Gaussia shape
prior (2.21) as well as the dynamic shape prior (2.23), the itroduced
functions Eshape are both quadratic in  with the positive de nite
covariance matrix 1 as their Hessian. Hence, all considered shape
prior functions Eshape are convex. The functionEry that evaluates
the goodness of the shape with respect to the image informain, is
also convex inq [18]. Sinceq isanein  (cf. (2.18)), the function
7" Etv (; ) is a composition of a convex function with an a ne
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™ b

\t& 0

Figure 2.5: Iterated Projections. The intersection of the convex
shape spaceQ with the nite dimensional space b, results in the
convex set ,. Starting with ¢, 62 , a solution in , is obtained
by iterated projections.

mapping and thus convex in . SinceE is the sum of two convex
functions, it is itself convex. O

Before we go on describing our Lipschitz optimization schem, we
give some remarks on how to comput& e ciently. Since the energy
E is convex in , a gradient descent approach would always lead to
the global optimum . In particular, if is within the domain
A, of feasible , we have thus found a way to computeE ( ). But
problems may occur if  is outside of our convex domain. In this
case, we have to re-project the computed at any time that we
leave the convex domain [74, 75]. Since our convex domain isiige
complicated, this projection can become computationally &pensive.
To cope with this problem, we propose an iteration scheme tha
approximates this projection. So, we will de ne a sequence (k),,n
of eigencoe cients that converge towards an °2 A, (cf. Figure 2.5).
The presented method works as following:

1. Let 1:=
2. Forallk=1;2;:::, do the following
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(a) At rst, we project the given shape function ¢, onto Q
which amounts to setting all values to 1 or O which are
above or below these levels respectively. This is in fact
the orthogonal projection of q , onto Q with respect to
the L2-norm of (2.14). Denote this projected shape asy.

(b) By projecting sk onto by, we receive a shape of the form
+ k+1- This de nes the next value. Since, the
eigenmodes describe an orthonormal system, the compo-
nents of 41 can be easily computed via
z

(k)i = (s(x) (X)) i(x)dx

Note that this sequence will not necessarily converge towats the
right projection. But it will converge towards a point of A, as we
will show in the following proposition:

Proposition 3. Let 2 R" an arbitrary vector and ( ), be the
sequence de ned as above. Then

I(I!ilm dist(q ,; n)=0

Proof. Let us assume that there exists an" > 0 such that
dist(q ,; n) " holds for every k 2 N. We will show that this
will lead to a contradiction and thus proving the proposition. For
now, we choose an arbitrary elementg 2 ,, that we will use as a
reference shape. Note that every iteration ¢ 7! (41 consists of two
orthogonal projections onto convex sets, namely ontdQ in the rst
step and onto b, in the second step. The property of convexity of
these two sets results in

ks ok’ kq, ok dist(q,;Q)?>
Q.. 0°ksc ok dist(s; bp)?
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and as a consequence

q,. q°kgq, o dist(q;Q?2+dist(s;by)?

Since the distances distq , ; Q) and dist(si; b,) are always realized
by elements which are at least by" away from A, the whole expres-
sion can be simpli ed as

9., a’kgq, ak’ dist(8 en)? (2.26)

with

©:=fq2 Q" dist(q; n) dist(q,; n)g
en:=fq2 nj" dist(q; n) dist(q,; n)g

Since e, and & are disjoint compact sets, their pairwise distance is
positive and according to (2.26), the distance between | and a will
drop below any possible threshold after a nite amount of time. This
contradicts the assumption that dist(q ,; n) will always be above".
Thus, the proposition is proven. O

Note that the orthogonal projection of a gradient update always
results in an element that has still a smaller energy value tlan the
starting element. Therefore, the method of iterated projedions leads
to a shape in |, that has a smaller energy than the starting shape.
Hence, combining this approximative projection scheme wih a gra-
dient descent approach will eventually lead to the global mhimum.
In our experiments, we noted that after ve iterated projections, the
process of iterated projections normally halts. Therefore the time
consumption is considerably reduced via the presented appxima-
tive projection scheme. In Figure 2.6, an example for the iteated
projection is shown. If we look at the thresholded shape in tle sec-
ond row of that gure, we can observe how the iterated projecion
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Figure 2.6: Iterated Projections for Stochastic Shapes. The
method of iterated projections (15! row) pushes the probabilities at
every pixel towards the interval [0; 1] of feasible values. br the shape
thresholded at 0.5 (2" row), this results in restoring important parts
of the shape.

results in repairing the threshold shape. The right leg for &ample
is repaired by this projection. This is an important property of the
shape prior driven shape acquisition. The observed data isepaired
with respect to the pre-learned shape prior.

2.4.2 Lipschitz Optimization for Transformations

As we have seen in the last section, we are able to computé ( )
of (2.25) for any transformation 2 S'. Now, we have to minimize
this function. Note that we cannot use the same technique asn the
last section becauseE is highly non-convex. But we will show that
E is Lipschitz continuous and as a consequence, we can nd an ap
proximation of the global optimum by an adapted exhaustive sarch.
Even though an exhaustive search is a classical discrete dptization
scheme, the main contribution is to provide a good approximé&on
of the global minimum with respect to original continuous function.
So in the end, we are able to solve the problem of sampling a cen
tinuous domain in nite time. This is done by sampling it only at
nite positions and at the same time we can guarantee that we fave
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a good approximation of the global minimum with respect to the
continuous domain.

To this end, we assume that every shape of lies within a nite
radius of near the origin, and thus all shapes are bounded from
above by the function gsypp:

1; if kxk

0; else. (2.27)

8 2An:q(X) Gaupp(X)=

As a consequence, the support ofs,pp lies inside of the ballB (0)
of radius centered in 0. We will now show that under mild reg-
ularity assumptions, the function E can be globally optimized on
SE(2) using the idea of Lipschitz continuity [43]. This technique was
used in Computer Vision before to solve the problem of point toud
registration [59].

To nd the global optimum of E , we iteratively subdivide the -
domain SE(2) into multiple smaller domains { see Figure 2.7. For
every sub-domainD  SE(2), we calculate the energy at one chosen
sample ¢ which provides an upper bound for the global minimum.
Provided that the gradient of E ( ) is bounded, alower bound for
each sub-domainD can be determined. By performing a branch-
and-bound method, we subdivide the sub-domains with the mas
promising lower bounds. In doing so, we iteratively nd tighter lower
bounds and terminate once su cient accuracy is obtained.

To determine the lower bound for a sub-domain, we assume thathe
functional does not oscillate too rapidly. In other words, we need to
assume that the following Lipschitz condition holds:

De nition 5  (Lipschitz). The function F : SE(2) ! R is called
Lipschitz continuous if there exists a uniform L 2 R such that for
all 1; 22 SE(2) the following inequality is ful lled:

JF(1) F(2)j Ldist( 1; 2)
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Figure 2.7: Lipschitz approach. If E (solid line) is Lipschitz
continuous (cf. De nition 5), then one can globally minimize it in a
continuous sense by iteratively nding lower bounds.

For di erentiable functions F this de nition is equivalent to the prop-

erty that the derivative %—F is bounded byL.

In order to prove that E is Lipschitz continuous, we proceed as
follows: First, we will estimate a Lipschitz constant L for the function
E(; ) at xedvalue . Afterwards, we will show in Proposition 4
that the same constantL is also a Lipschitz constant forE itself.

Lemma 3. If all functions of the training set  are Lipschitz con-
tinuous with constant L , then E(; ) is Lipschitz continuous with
respect to . The Lipschitz constant is independent of .

Proof. Any transformation 2 SE(2) = R?0 SO(2) can be written
as x = R(x+t), with arotation R 2 SO(2) and a translationt 2 R?.

dE dE dE  dE ?
In order to compute 5=, we have to compute' and g5. F ~ can
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then be computed via & %4 g 2.
dE z
— = (rgix t)y r f(x 1t))qg (Rx)dx
kK(rg(x t) r f(x t))kosupp(x)dx
B (0)
Z 1:2p_

kr f(x) r g(x)k?dx

Since SO(2) is a Lie group,g—E is computed by projecting the re-
sulting matrix on the Lie algebra so(2) of skew-symmetric matrices
which can be represented by one single real-value:
z d
= f X t)=——q (Rx)dx
s ol 9 DgRa (Rx)

Z

dE
dR

;
Lo 90 0 ra R

where [(8 312 )]50(2) = aj» ap; represents the orthogonal projection
of A onto the Lie algebra so(2)

Z

(f  g(x tdet(x;r g (Rx))dx
0)

L j(F g(x)jdx

2 2
With Gsupp de ned in (2.27). Since 9E ? = T+ B e

have found a uniform upper bound forr E that does not depend on
(; )2 SE(2) A,. Thus, E is Lipschitz continuous in and the
Lipschitz constant does not depend on . O
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Proposition 4. Under the above regularity assumptions on the
training shapes, the segmentationargming . y,a. sg) E(; ) can
be determined in a globally optimal manner.

Proof. It suces to prove that E () is Lipschitz continuous. Let
L be the Lipschitz constant of E(; ) and 1, » be two dierent
transformations of SE(2). Then, there are two elements 1; » 2 A,
fulling E ( 1)= E( 1; 1)and E ( 2)= E( 2; 2)resp., i.e.

E( 15 1) E(2 1) n E( 25 2) E( 15 2)
Using the rst inequality, we obtain

E(2) E(1)=E(2 2 E(1 1)
E( 25 2) E( 25 1) L dist( 1; 2);

while the second one gives:

E(2 E(1)=E(2 2 E(1 1
E( 1; 2) E( 1 1) Ldist( 1; 2):

Thus, E is Lipschitz continuous with the Lipschitz constant L. [

Overall, we showed how to acquire shapes with prior shape knd-
edge by globally optimizing a non-convex energy functional In the
next section, we will apply this method to acquire shapes frm a
walking person.

2.5 Tracking Walking People

In Section 2.4 we introduced an algorithm to acquire a shaperbm
an image under the condition that we have previously learnedthe
structure of the shape that we expect. This algorithm is basd on
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Gradient Descent

Lipschitz Optimization

Figure 2.8: Local versus global optimality. Image segmenta-
tion with a dynamical shape prior, implemented by gradient de-
scent (15t and 39 row) and by Lipschitz optimization (2" and
4™ row). While gradient descent can handle partial occlusion Iy
the table, it fails to handle total occlusion. The proposed Lipschitz
optimization, on the other hand, guarantees the globally ogimal
solution and therefore reliably tracks the person upon reapearing
from behind the white board.
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convex minimization of deformation parameters interlacedwith Lip-
schitz optimization of transformation variables.

To clarify the e ect of the Lipschitz approach, we will show a com-
parison of the algorithm run without and with the Lipschitz o p-
timization for a sequence showing a person walking in a clutred
scene. While more accurate results may be obtained with a use
speci ed stick- gure model, one should keep in mind that the pro-
posed method does not require any user interaction in the moel
building. It can directly be applied to arbitrary stochasti ¢ shapes
including purely binary shapes.

To this end, we construct a dynamical shape prior by hand-
segmenting a di erent sequence (showing a di erent person \alking
at a di erent pace). By box- Itering these binary functions , we re-
ceive probabilistic shape functions that are Lipschitz corinuous ac-
cording to de nitions 1 and 5. In order to reduce the dimensiaality
of the input data, we useAg as the parameter space (cf. Figure 2.3).

As image energy, we use the approach (2.20) whefgx) and g(x) are
the negative log probability for the observed intensity given that the
pixel x is part of the foreground or the background respectively. Ne
glecting the edge indicator termh in (2.11), we receive the following
energy functional:

Pog(l)

oon(1) g (x)dx+ k wk® .5 (2.28)

Z
E(; )= log

wherek  vik? ;= vi)” X V¢) describes the energy of
the dynamic shape prior { see equation (2.23).

During our experiments, we compare a pure gradient descentro

and with the proposed Lipschitz approach. Figure 2.8, # and 3¢
row, shows that the pure gradient descent works well in the pes-
ence of partial occlusions such as the table. Yet, it fails tocope
with larger occlusions where the local optimization gets stick in a
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Figure 2.9: Detection of inconsistent solutions. The plot
on the left shows the image energyEry as a function of the frame
number. Red crosses indicate the four frames shown on the i
Incorrect segmentation results due to a total occlusion of he object
of interest can be automatically identi ed and suppressed nd and
3rd frame).

local minimum with respect to . In addition, the gradient descent
approach obviously requires an appropriate initialization. Both of
these drawbacks are resolved by the proposed global optination
based on the combination of convexity and Lipschitz optimization {
see Figure 2.8, 24 and 4" row.

In Figure 2.9, we show that our algorithm also provides a relable
criterion to determine whether a computed result is consisént with
data or not: Reliable segmentations correspond to low (negave) en-
ergy, while unreliable ones (full occlusion) correspond tchigh (pos-
itive) energy. As a consequence, we can detect the full ocdion of
the white board. For the a ected frames, the shape minimizer(2.28)
is not meaningful in the sense that the appropriate shape camot be
found in the image. Hence, we can omit the minimizer of the shpe
functional. Therefore, we only acquire meaningful shapes ith re-
spect to (2.28). This demonstrates that a person can be relialy
tracked through clutter and occlusions without the need to reinitial-
ization.
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2.6 Limitation of LZ2-distances

In this chapter, we showed how a region-based shape model cére
a powerful tool to acquire shapes from images. Nonethelesshe
involved region-basedL 2-metric is a rather primitive metric. If two
shapes™1; 2 2 Q are binary, i.e., if they are of the form (2.2), the
following holds:

K1 ‘2k2=area(fx2 j1(x)=1g4fx2 ja0x)=1g) (2.29)

This means that the L?-metric measures the symmetric di erence of
the two given shapes. Therefore, thel?-distance has two important
drawbacks:

Sensitivity to Local Transformations: Local transformations
appear when the shape in question represents an object that
consists of di erent parts which can be moved independently
In the example of a walking person, the legs and arms can be
moved independently. For the person, these are only small
changes. With respect to the L2-distance, this may have
a large eect if the extremities of the person exist in non
overlapping areas of the image domain.

Sensitivity to Local Deformations: To recognize similar ob-
jects, we cannot always assume that the shape looks every tien
exactly the same. Even if the same person is present in the im-
ages, he/she may have changed clothes and as a consequence
he/she appears thicker in winter or thinner in summer. But to
have a general system that recognizes whether a given shape
is the shape ofa person and not only of a speci c person at
a speci c time, this system should be robust with respect to
local deformations.

For the presented shape acquisition, these drawbacks coulde cir-
cumvented by applying a Markov chain model. Also, the image @ta
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dominated the shape acquisition process. Note that the shag prior
was only used torepair the shape acquisition. The most important
data came from the images. This means that the shape prior was
just used to improve the performance of a purely data driven kape
acquisition method. In the next chapters, we will compare dierent
shapes. Therefore, we have to nd a method that compares shags
at a totally absence of any additional data. We are still interested
in a space equipped with a distance function. But due to the me-
tioned drawbacks of the L2-metric, we will use di erent spaces. In
Chapter 3, a metric is de ned by the shortest path length within
an in nite dimensional manifold that de nes a shape space. This
shape space is more sophisticated than the stochastic shampace
Q. In Chapter 4, a pseudo-metric is de ned by studying the grouyp
of shape di eomorphisms. Such a di eomorphism is also knownas
a matching. We will show that the pseudo-metric induced by the
matching function is a very helpful tool to classify di erent shapes.
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Chapter 3

Shape Morphing

In the previous chapter, the similarity between two shapes vas com-
puted as a region-based. 2-distance (cf. (2.14)). In this chapter, we
want to advocate the philosophy that a shape is best descrila by
its outer boundary, which can be represented by a contour in he
plane. We will see that this concept of shape is much more robst
with respect to local deformations. As a result, we do not hae to
model the most likely deformation to introduce a meaningful mea-
sure of similarity as it was done in the last chapter in the mea of
the Markov chain model (cf. (2.22) and (2.23)). On the other hand
we ignore possible holes inside of the shape (see also Figure).

A lot of researchers have put a considerable amount of e ortmto the
understanding of shapes. Measuring the dissimilarity between two
given shapes can be done by de ning and examining metric spas
which model shapes (cf. [32, 26, 28, 6]). In this chapter we flow
the idea that a contour is a smooth loop in the plane. Thus, we
like to consider all mappingsc: St ! C that assign a point in the
plane C to every point s of the circle St = fs 2 Cjjsj = 1g. Every
closed loop can be described as such a mappirg In this chapter,
we will make use of the algebraic structure ofC. Therefore, the
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plane is modeled asC instead of R? as it was done in the previous
chapter. In order to consider shapes which are independent ith
respect to translation or rotation in C, we have to merge di erent
representations of a shape. This results in a shape spac&whose
elements are described as sets of contours. Each of these sets is a
class of equivalent contours that describe ashape Hence, we have
to de ne an equivalence relation which will be done via a grogp that
operates on the set of contours. In this chapter, we will presnt
di erent models of such shape spaces which have all in commoathat
they do not form a convex set or even an a ne vector space. But
even for these spaces, we can de ne a metric by considering ¢h
paths m : [0;1]! S that connect two di erent shapes Co = m(0)
and C; = m(1). The distance dist(Cp; C1) between Cy and C1 will
then be de ned as the shortest path length of such a pathm that
connects Cy and C;. We call such a path m a morphing because
it describes how one shape&g is continuously transformed into Cj.
In this chapter, we will present a variational method that computes
such a morphing very e ciently.

Our work is built on several prior works. Michor and Mumford in-
troduced in [66] a shape spacé that is path-connected. Therefore,
it makes sense to look for the shortest path that connects twadif-
ferent shapes. SinceSis de ned as an orbifold!, every path can be
measured and the shortest length of a shape-connecting pattan be
computed. But unfortunately, a quite canonical approach results in
the trivial shape distance function dist(; ) 0. In order to cope
with this result, Michor and Mumford introduced another app roach
that depends locally on the shapes' curvature. Since the copu-
tation of the shortest path results in solving a challenging partial
di erential equation , we will follow another approach.

This approach was advocated by Klasseret al. [51]. Instead of con-

L An orbifold can be understood as a manifold modulo a group operation. For
a detailed introduction see [92]
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sidering all representations of a shape, they only consided those
curvesc: St!  C which are parameterized by arc-length. As a con-
sequence, they received a shape spaBg on which shortest paths are
much easier to compute than onS, since it results in solving multiple
ordinary di erential equations. As a consequence, the calalation of
a morphing path could in many cases be done within seconds usj
the so-called shooting method This method uses a searching beam
from the initial shape. That beam will be changed until it hit s the
target shape. During this transition from the initial shape to the tar-
get shape, the beam is deformed according to the underlying gtric
just as a light beam is bent by gravity in the theory of general rel-
ativity. Computationally, this method is still quite expen sive but
faster than the method proposed by Michor and Mumford.

The focus of this work is it to show how these shortest paths ca
be computed even more e ciently by minimizing the involved en-
ergy functional. This method is a gradient descent approachwhich
converges quite rapidly in comparison to the shooting methd. This
chapter is organized as follows. In Section 3.1, we will prest the
two shape spacess and S;. In Chapter 3.2, we will address the dif-
ferential geometrical concepts ofsubmanifolds tangent spacesand
geodesics In order to make these concepts accessible to a broader
audience, we will omit the concepts oflocal charts and Riemannian
metrics. Instead, we concentrate our e orts on submanifolds that
are isometrically embedded in Euclidean vector spaces.

In Chapter 3.3, we will present our concept of computing a gedesic
e ciently by consecutively shortening a path until it becom es a
geodesic. We nalize this chapter with a comparison of our méod
to the shooting method. It turns out that our variational pat h-
shortening method will be faster by a factor of up to 1000 depeding
on the used shape resolution.
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t70 340 t? t 7! exp(i t?) t 7! exp(i t)

Figure 3.1: Immersion. Smooth mappingsc : [0;1] ! C into
the plane C do not necessarily de ne a smooth contour. Ifc is an
immersion (39 image), ¢ describes always a smooth contour.

3.1 Shape Spaces as Orbifolds

In this section we will present a shape model that di ers from the
model of stochastic shapes in the last chapter in the sense #t we
only consider shapes that consist of one connected, smoottobndary.
This boundary can therefore be described via a contouc: St! C.
To guarantee that c describes asmooth contour, ¢ has to be an
immersion (cf. Figure 3.1):

De nition 6. A mapping c: S'! C is called animmersion if it
ful lls the following properties:

1. c is a smooth mapping, i.e. for every k 2 N the derivative
ck) : sl C exists.

2. & is invertible, i.e. the inequality c{s) 6 0 holds for every
s2 St

The set of allimmersions fromSt into C is denoted as Imm&*; C). To
every immersion, we de ne theimmersion index. This is the winding
number of the derivative c® with respect to 02 C (cf. Figure 3.2):
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Figure 3.2: Immersion Index. Two contours (1%t column) and
their derivatives (2" column) are shown. The contour of the $ row
has an immersion index of 1 while the contour of the 2 row has an
immersion index of 0. Hence, the contours cannot be transfaned
into one another.
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Z
. 1 xdy ydx
ind(c) = > cow 27 (3.1)
The set of all immersion of a specic indexk 2 Z is denoted as
Imm*(St; C). The set of all immersionsc 2 ImmK(St; C) that are
parameterized by arc-length is denoted as Imrij(Sl;C). These are
immersions for whichkck 1 holds.

It follows from Algebraic Topology [44] that contours can nat be

transformed into one another if they di er by their immersio n index.

Also, if ¢ 2 Imm(St; C) describes the boundary of a binary shape,
the immersion index is either 1 or +1 depending on whether the
boundary is swept in the clockwise or the counter clockwise ense
respectively. Therefore in order to compute a morphing, we ee in

the following only interested in immersions of index 1. If a $iape
is now given in a binary form, the representing contourc can be
easily derived by starting at an arbitrary point of the bound ary and

following the boundary in a counter clockwise sense. Even tbugh

the orientation of the curve is xed, the curve is still quite ambiguous
in the sense that there is no natural way to de nethe starting point

of the described sweeping process. Moreover, if we reparateeaze

the circle St via any di erentiable mapping ' : S'! S, we receive
another curve ¢ ' that describes the same contour asc. Since,
we are only interested in reparameterizations that lead to aother

immersion, ' itself has to be a di eomorphism:

De nition 7. Amapping c: St ! Slis a di eomorphism if it ful lls
the following properties:

1. cis a bijective mapping.

2. candc ! are C! -mappings.
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The set of all di eomorphisms of the circle is denoted as Di (S!).

Any of these di eomorphisms describes a loop ors! that passesS! ei-

ther in a counter clockwise sense or in a clockwise sense. Tket of
counter clockwise passing di eomorphisms is denoted as Di* (S)

and the set of clockwise passing di eomorphisms is denoted sa
Di  (SY).

Together with the composition, the sets Di (SY) and Di *(SY

form groups, but from these both groups, only Di *(S') acts on

Imm?*(S; C) as reparameterization group. This is because a di eo-
morphism' 2 Di  (S!) maps any immersionc 2 ImmK(St; C) onto

an immersion of Imm K(S!; C). According to these observations, we
can get rid of possible ambiguities of the presented shape peesen-
tation by considering the quotient of Imm?*(St; C) and Di * (S!):

De nition 8  ([66]). The space ofimmersion based shapess de ned
as the orbifold

S:=Immi(st;C)=Di *(sh (3.2)

Within the space Immi(St; C), there exists the following set
S=fs7l sj8 2Slg (3.3)

which contains multiple representations of the circle eachof these
only diers by its starting point. Furthermore, S itself is a circle
embedded into Immi(S!; C) and parameterized via .

In [66] it was shown that S is a smooth, strong deformation retract of
the space Imnt(St; C). Such a retract is a subset that contains most
of the relevant topological properties. The mathematical ¢ nition
is the following:

Denition 9. A subsetA X of a topological spaceX is called a
smooth strong deformation retract if there exists a smooth function
r:[0;1] X ! X such that
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r(0;x)= x forall x2 X.
r(1;x)2 A forall x 2 X.
r(tta)= aforalla2 A andt 2 [0O; 1].

A smooth, strong deformation retraction r moves therefore any ele-
ment x of the supersetX smoothly on an element in the subsetA.
A lot of interesting topological properties can be transpoted from A
towards X . But rst let us recapitulate what was shown by Michor
and Mumford for the presented sets of immersion&

Theorem 1 ([66]). The following two declarations hold:

Imm}(S';C) is a smooth strong deformation retract of
Imm?i(St:; C).

Imm}(St; C) contains the circle S of (3.3) as a smooth strong
deformation retract.

As a consequence, we can show that ImhiSt; C) and Imm?(St; C)
are path-connected spaces. This means that to arbitrary el@ents of
the respective sets, we can nd a path within this set that comects
the two elements:

Corollary 1. Immi}(S!;C) and Immi(St;C) are path-connected
spaces.

Proof. Since the circle S of (3.3) is obviously path-connected, it wsf-

ces to show the following: If A is a smooth, strong, path-connected
retract of a topological spaceX, X itself is path-connected. If we

can show this, Immi(S'; C) is path-connected becauseSt is path-

connected and as a consequence, Imits!; C) is path-connected be-
cause Immi(St; C) was already path-connected.

20ut of simplicity, we restrict ourselves to the properties o f the index-1-
immersions
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Hence, let us assume thatr : [0;1] X ! X is a smooth strong
deformation retraction from X onto the path-connected spaceA

X. Further, let x;y 2 X be arbitrary but xed elements of the
supersetX . SinceA is a path-connected space, there exists a path
p:[0;1]! A that connects ay := r(1;x) 2 A with ay == r(1;y) 2 A.
Now, we de ne the following path gin X:

g:[0;1]! )é
> r(3t;x) Jift2 0;3
t7_p@Et 1) ,ift2 1,2
“r@3 3y) Lift2 41

Sinceq(0) = r(0;x) = x and g(1) = r(0;y) = vy, g starts in x and
ends iny. In order to show that this is really a continuous path from
X to y, we have just to show that the path is well de ned at the
pointst= fandt= %

1 1
r 3:—3;x =r(;x)=ax=p0)=p 3:—3 1

p 3:—23 Lx =pl)=a =r1;y)=r 3 3:—23;x

O

Note that any path m : [0;1] ! Imm?*(St;C) de nes a path m :
[0;1]! Son the quotient spaceS by assigning to everyt 2 [0; 1] the
equivalence class om(t), namely

m(t) = [m(t)];

where |m(t)] denotes the equivalence class irs that itself contains
the immersion m(t). Hence, the shape spac& is like Imm?*(St; C)
a path-connected space and it makes sense to de ne the similty
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between two shapes as the length of the shortest path betweetwo
shapes. In order to compute the similarity between two shaps as
e cient as possible, we want to focus on pureL?-distances. Since
it was shown in [66] that a canonical L2-distance for Imm'(St; C)
leads to a trivial metric on S, we will now turn our attention on a
shape space that is based on contours modeled via ImitS; C), i.e.,
the contours have to be parameterized by arc-length. This shpe
concept was advocated by Klassen and his coworkers [51]:

1. Since this shape concept is based on contours which are pa-
rameterized by arc-length, Di * (S!) is not a group operation
any more. This is because an arbitrary reparameterization
' 2 Di *(S') may change the speed of a contour. In fact, itc
is parameterized by arc-length, the following holds forc ' :

9o (9 = () %)

ds
=i' 4s)i I—{§S)) ' qs)

We used the property that forany ' 2 Di *(S!), ' °> 0 holds.

To guarantee that ¢ ' is also parameterized by arc-length,
we allow therefore only those reparameterizations for which

' 0 1 holds. Therefore, a reparameterization is only allowed
to change the starting point of the contour. As a result, the

reparameterization group acts now asSt. To ¢ 2 Immi(St; C)

and 2 S! C,the reparameterized contourc is then de ned

as:

c :S'!1 C (3.4)
7' ¢( )

2. Secondly, the modeled shapes should be invariant with reect
to rigid body transformations. In the real plane R? such as
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. - - _ cos( ) sin( )
transformation consists of a rotation R = sin( ) cos( ) 2

SO(2) and a translationt 2 R?. Since we model the plane a€,
R becomes a multiplication with the complex number cos( ) +
i sin( ) 2 St andt is an element ofC. If a transformation
(R;t) 2 SE(2) = Co Stis now given, the contours 7! ¢(s) and
the contour s 7! R (c(s) + t) should describe the same shape.
The shape model that we intend to use will also eliminate thee
ambiguities.

Note that we have now two group operations that we like to elim-
nate. The reparameterization group that acts asS' from the right
hand side on the contour set Imn(St; C) and the rigid body trans-
formation group that acts as SE(2) from the left hand side on he
contour set. Overall, we are therefore interested in the fdbwing two
spaces:

De nition 10.  The space ofarc-length based preshapess de ned
as

C; =SE(2) nimmi(St; C)

and the space of parameterization freearc-length based shapess
de ned as

S =G =St

Since every shape is parameterized by arc-length, every spa has a
length of exactly 2 . As a result, the presented shape model is also
invariant with respect to rescaling. This takes into accourt that the

size of a photographed object re ects the distance of the caera to
the object. Hence, there is no relation between the observesize and
the real size of the object. Also, Galilei [37] showed that ofects that
are in reality smaller exhibit another corporal structure. Our shape
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concept would therefore still be able to di erentiate this change of
size.

It was shown in [51] that the preshape spaceC; can be understood
as a submanifold of the vector spacd.?([0;2 ];R). Here, we want
to repeat this construction brie y (cf. Figure 3.3):

1. Sincec 2 Immi(S*; C) is parameterized by arc-length, its
derivative is a C*! -function c®: St I S! which can be en-
coded by a function :[0;2 ]! R such that the following
lifting equality holds [44]: ® €* = € ). If we consider
now instead of ¢, we obtain a representation that is invariant
under translations in the plane C.

2. To describeC; we have now to get rid of possible rotations in
the plane. If we apply a rotation R = cos( )+ isin( ) on a
curve c with its shape representative , we receive the following
equalities:

% R cs)]=€ ds)=€ €& &  with s=&*

=+ (x)

Hence, a rotation onc acts now as addition on . We can now
X a possible rotation by demanding for the following equality
to hold:
Z,
(x)dx =2 2 (3.5)
0
To choose 22 as constant is quite arbitrary and we could
choose any other constant. But it was chosen in order to
make the function x 7! x feasible. This function is the -
representation of the shape \Circle".
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Figure 3.3: Shape Representation. Contours (18t column), its
rst derivatives (2 " column) and the -representation (39 column)
are depicted. Translations of a contour (29 row) are Itered out by
the -representation while a rotation (3" row) results in a translation

of the -representation.
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3. Also note that the immersion index of the immersionc is also
re ected by in the following sense:

2) (©=2 ind(c)=2

Therefore, the -functions that describe elements ofC; are of
the following ane L?-space:

L= :[02]!' R 0= (2)+2 ~
®eEy= ®@ )forall k>0

4. In order to make sure that really represents the derivative of
a contour, we have toclose the loop This means that we allow
only those functions that describe a closed loop. Therefore,
the following must hold:

z z R !
= (s)ds= i e Wdx = 2 cos( (x)dx
0 st 0 o Sin( (x)dx

Concluding all these observations,C; can be modeled as follows.
Theorem 2 ([51]). If we de ne the function : L! R3via

L! R®
0 R, )d 1
X)aXx
71 E.;;Z cos( ()dxX ;
& sin( (x))dx

C. can be modeled as the submanifold (2 2;0;0) L
L2([0;2 |;R).

As a consequence, the shape spa& is like S an orbifold. In the

following section, we will address the problem of nding a slortest
path on submanifolds like C;. This will result in the very prominent
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concept of the so-called shooting method. In the subsequerstection,
we will present an alternative method that is much faster than the
shooting method. In fact, this path-shortening method is fester by
a factor of up to 1000 depending on the shapes' resolution. Adi-
tionally, we will show how the concept of shortest paths inC; can
be extended to nd shortest paths in ;.

3.2 Geodesics on Submanifolds

In this section, we will present the idea of geodesics and thpromi-
nent shooting method to compute such a geodesic. In the folleing,
we will restrict ourselves to submanifoldsM that can be described
as a subset of an Euclidean vector spack like the submanifold C;
that is a subset of the Euclidean vector spacd.?([0;2 ];R). Since

such a vector space is equipped with a scalar produdt ; i , we can
compute the length of any smooth pathm : [0;1]! E via:
z 1
1
length(m) = mqt) ; m%t) 2dt (3.6)
0

In order to nd the shortest path between two points x;y 2 E, often
the minimum of the following energy functional is consideral
Z 1
E(m) = mqt) ; mqt) dt (3.7)
0

This is because every minimizer ofE() is also a minimizer of
length( ). Moreover, the global minimum of E( ) is a shortest path
betweenx and y which is parameterized uniformally, i.e., %m (t)
is constant:

Theorem 3. If mg and m are global minimizers oflength( ) and
E() resp., then

1. &m (1)  length(m)
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2. length(m ) = length( mg)

Proof. First, we observe the following inequality which is derived
from the Cauchy-Schwarz inequality applied to anL2?-space:
Z,
length(m) = mqt) 1dt
0
z 1 Z, 1

1 5 2 2 1
mYt) 12 = E(m)2
0 0
This inequality becomes an equality if and only if the two functions

kmqt)k and 1 are linearly dependent, i.e., ifm is parameterized
uniformally.

1. If m diers from its uniformally parameterized instance m,
we receive:

E(m)2 = length(m) = length(m ) <E (m )2

This is a contradiction to the minimality of m . Therefore, m
must already be uniformally parameterized, i.e., %m (1)
a such that:

Z, d Z,

length(m ) = —m (t) dt = adt = a
o dt 0
2. Denoting the uniformally parameterized instance ofmg as @y,

we receive

length(mg) =length( o) = E(rao)%
E(m )z =length(m ) length(mo)

Since the rst and the last expression describe the same vakj
every inequality has to be an equality and lengthfn ) =
length(my). O
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This theorem shows that in order to nd the shortest path between
two elements of the Euclidean spacee, it su ces to minimize the
functional E() instead of the functional length( ). Additionally by
optimizing E (), we obtain a path that is uniformally parameterized.
Especially from an implementation point of view this parameteriza-
tion has an important advantage. Since a path is normally stoed in
a discretized version, it comes in very handy that we always btain
a path that is parameterized uniformally. As a consequencewe are
sure that no range of this path is oversampled.

Now we want to extend this concept of shortest paths on subman
folds. These aresmooth subsetsM of an Euclidean spaceE, e.g., a
sphere or a cylinder inR3. To any point x 2 M of such a subman-
ifold M, we obtain a tangent space, denoted agxM such that for
any smooth path m : [0;1]! M, the following holds:

mqt) 2 TyyM , forall t 2 (0;1)

Hence, all possibledirections of a path starting in x are stored in
TxM . We assume that the tangent spaces at any base point are
of the same dimensionk and we call k the dimension of the sub-
manifold M. A closed non-intersecting loop inR? is therefore a
one-dimensional submanifold and a sphere is a two-dimengial sub-
manifold. For a more formal introduction to submanifolds and man-
ifolds, we like to refer to [31, 21].

Since every tangent spacélxM is a subset ofE, the scalar product

of E can also be applied to vectors inTyM. As a consequence,
the functionals length() and E() are also de ned for paths on a

submanifold. This leads to the following metric on submaniblds

De nition 11. Let M E be a path-connected submanifold of
an Euclidean spaceE. To two dierent points x;y 2 M of this
submanifold, we assign the distance:

distm (X;y) = min length(m) (3.8)

m smooth path,
m@) = x, m@) =y
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Figure 3.4: Tangent Space and Exponential Mapping. To
any point p of a manifold M (1% image), a tangent spacel,M can be
de ned. The exponential mapping maps every straight line in ToM

passing through 02 T,M onto a geodesic onM passing through p
(2" image).

It can be shown that disty ( ; ) is a metric on M and the goal of this
chapter is to compute this distance. The observations of Therem 3
lead us to the following de nition of a geodesic:

De nition 12.  Given a submanifoldM  E of an Euclidean space
E, apath m:[0;1]! M is called a geodesic if it ful lls the Euler-
Lagrange equationwith respect to the functional E().

If M itself is a vector space of dimensionk, the Euler-Lagrange
equation of the functional E is quite simple and results in

0 mOO

Here, m® and m®are k-dimensional vector elds along m. But in
the case of a submanifold, onlym®is a k-dimensional vector eld,

61



ie, mqt) 2 ThyM for every t 2 (0;1). For m% this property

does not hold any longer. But we can splitm®into a tangential (k-

dimensional) vector eld m®®" and a normal vector eld m°®°", Us-
ing the concept of Lagrangian multipliers, the Euler-Lagrange equa-
tion for submanifolds becomes:

0 mOO)an

In order to compute a geodesic, an ordinary di erential equdion
can be solved. In fact, given a starting pointx 2 M and a starting
direction v 2 TxM, the following di erential equation

m(0) = x mY%0) = v mo®n(t) 0 (3.9)

is an initial value problem. This problem ful lls the Picard-Lindelf
conditions and has a pathmy., : R ! M as unique solution. This
leads to the de nition of the so-called exponential mapping

exp, : TxM I' M
vV 7my.y (1)

While the shooting method used in [51] makes use of the expongal

mapping, the variational method that we will propose in Secion 3.3
directly relies on the de nition of a geodesic and is compute by

minimizing the energy functional E(). Our approach has several
advantages over the previously used shooting method:

First of all, we do not rely on computing the ordinary di eren -
tial equation (3.9). As a consequence, our approach turns du
to be much faster than the commonly usedshooting method
Depending on the resolution of the shortest path, i.e., the
amount of intermediate shapes that we compute, we receive
an runtime acceleration of a factor of up to 1000.
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Since we do not have to approximate the solution of the
ordinary di erential equation, the proposed path shortening
method is numerically much more stable. If we approxi-
mate (3.9) linearly like in [51], small errors may be accumu-
lated, so that at the end we do not receive a path which is
parameterized in a purely uniform manner. But for the path
shortening method, the uniform parameterization is accordng
to Theorem 3 a byproduct of the optimization process. In fact
errors are always dampened in every iteration step.

Another important property of the method that we will pro-
pose in Section 3.3 is that it is symmetric in the sense that tke
shortest path from x to y is always the same as the shortest
path from y to x. From a theoretical point of view this may ap-
ply to every method that tries to compute a geodesic between
two points. But the numerical stability of the shooting meth od
relies on the curvature of the manifoldM at the starting point
x. If this curvature diers at x andy the shortest path from
x may di er from the shortest path starting at y if we use the
shooting method. This restriction does not hold if one would
use the path-shortening method of the following section.

3.3 Path-Shortening Method

In this section, we will present our method of computing a gedesic
between two given pointsx and y on a submanifold M of an Eu-
clidean spaceE. First, we will start with the case that E is an
arbitrary nite dimensional space. After explaining our me thod for
this rather general case, we will address the problem of ndig a
geodesic in the submanifoldC; of preshapes. Finally, we will explain
how a shortest path on the quotient spaceS; can be derived from
geodesics onC;. The central idea of this path-shortening method
is to start with an arbitrary x-y-connecting path and subsequently
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Figure 3.5: Path-Shortening Method for a Sphere. Starting
with an arbitrary path on a manifold, the proposed method shatens
the path until it becomes a geodesic.

shortening this path (cf. Figure 3.5). This will be done by applying
a gradient descent method with respect to the functional (37).

3.3.1 Geodesics in a Finite Dimensional Space

If M is a submanifold of a nite dimensional vector space, every pint
X 2 M can be encoded by nitely many coordinates. Therefore from
now on, we assume thatV is a submanifold of RN such that every

compute a geodesic, we have to encode a path between two paint
X;y 2 M in a discretized manner. Therefore, we assume that a path
m :[0;1]! M is encoded asn via

N (n+2)
—7T o m@® 2R (3.10)

m = m():::m

Such a discrete representation encodes the two boundary ohé path
and n intermediate points. For increasing n, we receive a ner dis-
cretization of the path m. Our path-shortening method will start
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with an arbitrary discretized path m and during the process the
path is altered in a way that the involved energy function E() is
reduced by applying a gradient descent approach. As soon ahé
method terminates, we obtain a local minimizer of E() that de-
scribes a geodesic betweer and y. So instead of trusting in the
numerical stability of an exponential mapping computation, we min-
imize E () directly.

Let us assume thatm = (x;mgq;:::;mp;Y) is such a discretized
path. Since the Fechet derivative of E() is m%®" we have to
alter m in the direction of the discretized m®®" I we combine a
forward and a backward di erence scheme, we receive updateectors
for mq;:::;m,. For x and y, we get no update vectors. But this is
not necessary, since we want to solve Boundary condition problem
and the points x to y have to be xed. After all, we want to compute
the shortest path betweenx andy. For the update vector in question,
we receive
tan
mi = Mi 1+ Mivg m; (3.11)
2

To compute m, we have to eliminate the normal component of the
expression inside of the brackets in (3.11). The observatio that we
use to compute this e ciently is (cf. Figure 3.6)

m(mi + d) = m; , d" =0

Here, » : RN | M describes an orthogonal projection onto the
submanifold M from the surrounding spaceRN and d 2 RN is a
possible update direction ofm;. This observation is only true if d is
small enough. Otherwise it is possible thatm; + d will be projected
onto another point on M. For now, we assume that the update
directions will be small enough such that this observation §ll holds.
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Figure 3.6: A small deformation d from a given preshapem; is or-
thogonal to the tangent spaceT, C at this given preshape, i the
projection of the deformed preshapem; + d onto the preshape man-
ifold Cis equal tom;.

By stressing this observation even further, we obtain
m(mi+d)  wm(m;+ d®) (3.12)

This is the key to the path shortening method. Combining equa
tions (3.11) and (3.12), we get the following update step
!

tan
mi 1+ Mjs1

mi+ mj=mm m+ > m;
mi 1+ Mi+
M 2
This results in the proposed path shortening method:

Note that this algorithm uses for most of the time the linear structure

of the surrounding spaceRN. The only additional function we have
to compute is the projection j onto the submanifold M. Please
note that it is not clear whether the initial path between x and
y that is computed in Line 2 is parameterized uniformally. But our
variational approach will take care of an online gauge x andas soon
as the method terminates, we receive a path that has this impdant

property. In the next section we will show how this method canbe
used to compute a geodesic on the submanifol@, of preshapes.
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Algorithm 1 Path Shortening Method

Input: Two points X, y of the manifold M RN and the amount
n 2 N of intermediate points.

Output: Geodesicm = (mg  mMp+1) 2 RN ("2 with mg = x
and mp+1 = Y.

1. forall i=0;:::;n+1 do
2 mi= u X+(y X) &7
3: end for

4: repeat

5. forall i=1;:::;ndo
6: Mi = M mi+1';mi 1
7:  end for

. — prn 2
8: = i=1 kM mik

9: forall i=1;:::;ndo
10: m; = M;
11: end for
12: until  is small enough
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3.3.2 Geodesics on the Preshape Space

In the previous section, we addressed the problem of nding a
geodesic on a submanifoldM that is embedded in the nite dimen-
sional linear spaceE. Now, we want to expand this concept to the
more general submanifoldC, of preshapes.

The rst thing, we have to provide is the projection mapping c,.
Here, we use the approximative projection scheme presentdd [51]:

Algorithm 2  Approximative Projection on the Preshape
Space
Input: f 2 L?([0;2 ])
Output: 2 C; which is closeto f.
1. =f
2: while o g2C; do 1
Ff (x)dx 2 2
3 r= = cos( (x)dx %
S sin( (x))dx

° 1 L2 sin( )dx 1R cos( )dx !
2 2
2 1=B RRO2 sin( )dx ;20 sin( )2dx éRO% sin2 )dxX
o 1 s ocos()dx 1 2 sin@)dx 2 cos()2dx
ui
5: @UZA =J I
us
6: (X):= (X) up uzcos((x)) wugsin( (x)).
7: end while

In Line 3, the deviation of from C; is stored inr. If r = O,
must be an element of the preshape spac€; because this is how
C1 was modeled in Theorem 2. In every iteration step, is pushed
towards C;. This is done by computing the JacobianJ of in Line 4
and updating in Line 6 accordingly. In practice, the method will

68



be terminated as soon as is close enough toC;. So instead of
the condition 62C;, we will check for the condition krk > " for a
pre-selected” > 0. In our experiments, we choos¢ =10 6.

Another problem that we have to solve is that an element of the
linear spaceL  L?([0;2 ]) cannot be encoded with nitely many
parameters. Therefore, we also have to discretize the preapes. To
any preshape 2 C;, we choose an equidistant discretization

0 2 i 2 (N 1

— v N
= S St N 2 RN (3.13)

The submanifold C; intersected with this nite dimensional space RN
will be denoted asC,; . With the presented discretization scheme, the
problem of nding a shortest path between two preshapes 1; 22 G
can be reduced to the situation discussed in the last sectioby look-
ing for a shortest path between ; and , of C,. Hence, Algo-
rithm 1 can be used to nd a geodesic between,; and ,. In the
next section, we will address the problem of nding a shortes path
between shapesinstead of just nding shortest paths between pre-
shapes Therefore, we have to study some properties of the quotient
51 = C1=81.

3.3.3 Geodesics on the Shape Space

Knowing how to compute geodesics orC;, we have the major tool
to compute geodesics on the shape spa&. Every element of this
space consists of a whole equivalence class of di erent ptegpes. The
shape class of a preshapewill be denoted as [ ] and it contains every
preshape that can be created by the group operation of (3.4)Since
this group operation was de ned for contours, we have to refomulate

69



/ \

Figure 3.7: Preshape Orbits. Since any shape can be parame-
terized with di ering starting points, it corresponds to a f amily of
preshapes which form a closed curve on the manifold of prespas.
Symmetries of a given shape will be re ected by multiple covengs
of this curve. In the case of a circle, this curve of preshapewill
collapse to a single point.

it for -functions. As a result, we receive

[1=f jJ 2[0;2 ]9 (3.14)
:[0;2 ]! I(? (3.15)
x+ ) I X+ 2
(x + 2) ( 2) ,ifx+ > 2

X 7!

The reparameterization  is now de ned for any 2 [0;2 ]. But
since g = 2 , we can identify 0 with 2 and thus, we still have a
St-like group operation. This is because the interval [02 ] together
with the addition modulo 2 describes the same group a§' C
together with the multiplication of complex numbers Therefore, we
will call the group operation (3.15) still an S'-operation. One im-
portant property of this operation is the fact that it is a len gth-
preserving group operation onC;. This means that if we apply a
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speci ¢ reparameterization encoded by 2 [0;2 ] on a whole path
m : [0;1]! Ci, we receive a path of the same length:

Lemma 4 ([51]). Given a smooth pathm : [0;1] ! C; and an
2 [0;2 ], another path m : [0;1] ! C; of same length can be
de ned via m (t) := m(t) .

Because of this lemma, the shortest path between two shapes!] 2

S; and [ 2] 2 S; can be computed by looking for the shortest path
between the two orbits [ 1] and [ 2] that form loops in the preshape
spaceC;. So the problem of nding a shortest path in the quotient

space$S; could be transformed into a shortest path problem on the
submanifold C;. But this problem can be simpli ed even further.

Let us assume that the shortest pathm between [ 1] and [ ?] starts
at ! and ends at 2. Then according to Lemma 4,m is a path
of the same length. But because of

m ©=m@0 =1! = m @)=m@ = 2

we also nd a shortest path from [ 1] to [ ?] that starts directly at
the preshape 1. Hence, the problem of nding a geodesic between
the shapes [!] and [ ] can be solved by nding a geodesic between
the preshape ! 2 C; and the preshape orbit [?] C;.

Since our discretization scheme of Algorithm 1 minimizes tle pair-
wise quadratic distances of subsequent intermediate presipes, we
have to extend this concept to the shape orbits. In order to doso,
we have to solve the problem of nding the 2 [0;2 ] such that the
L 2-distance between two discretized preshapes and is mini-

mized. The solution of this subproblem will then be used to exend
Line 6 of Algorithm 1 accordingly. Because of the discretizéion that

we are using, we are looking for the optimal cyclic permutaton of
the discretized preshapem; with respect to m; ;. This can be cal-
culated via Discrete Fourier Transform which can be computevery
e ciently [14]. The function to calculate 2

Zlo
N

=z

N
N
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Algorithm 3 Geodesics on the Shape Space

Input: Two preshapes; 2 C; RN and the amountn 2 N of
intermediate preshapes.

Output: Geodesicm = (mg  mMps1) 2 RN ("2 with mg =
andmps 2 1.

1. Mg =

2. forall i=1;:::;n+1 do

3: m; = c +( ) ﬁ
4: =DFT( mj 1;m;)

5 mj=(m;)

6: end for

7. repeat

g forall i=1;:::;ndo

9 Mi= o S

10: = DFT( mi 1, Mi)

11: Mi = (M)

12:  end fpr

13: = prinzl kM mik2

14. forall i=1;:::;n+1 do
15: m; = M;

16:  end for

17: until  is small enough
given the preshapes and will be denoted as DFT( ; ). As

a result, we receive the Algorithm 3 to nd geodesics on the shpe
spaces;.

Note that this approach is not a purely continuous approach. It is
of course true that the gradient descent step is a classicalontinuous
techniqgue. Nonetheless, the computation of theDiscrete Fourier
Transform depends highly on the discretization size. Hence, the
presented method is a semi-continuous approach.
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3.4 Comparing Di erent Approaches

In the last section, we proposed a variational method to compte a
geodesic on the shape spac®. In contrast to the shooting method,
we do not need to solve multiple ordinary di erential equations in
order to receive such a geodesic. Therefore, it seems reasbie to
assume that the proposed method is much faster than the shootg
method. To substantiate this, we present several tests on skpes that
are publicly available. First of all, we use the SQUID databzase [68]
that has been provided by the University of Surrey. Additionally, we
use the more recent MPEG7 shape database The samples that we
use from these databases are chosen to illustrate the funamality of
the proposed method.

We start our evaluation by showing that the distance function we
used describes the similarity of di erent shapes better than the re-
gion basedL 2-distance that we used in Chapter 2. Afterwards, we
will compare the shooting method with the proposed variational

path-shortening method. We show that in contrast to the shoding

method, our method provides symmetric results and we will caclude
this section with a run-time comparison that shows an improvement
of a factor of 1000 depending on the shapes' resolution.

3.4.1 Contour Based vs. Region Based Approach

First, we will show how the presented method ofshape morphing
exhibits a shape metric that is more accurate than the regionbased
L 2-distance used in Chapter 2. To this end, we consider the thre
di erent hands in Figure 3.8. The di erence between the rst and
the second hand is from a perception point of view negligible In

3The shape database MPEG7 CE Shape-1 Part B is online available
and can be downloaded at http://www.cis.temple.edu/ ~latecki/TestData/
mpeg7shapeB.tar.gz
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Figure 3.8: Three hands. In the following, we will compute the
pairwise distances of these three hands. These are samplekthe
MPEG7 shape database.

fact, the hands only dier in a slight bending of the thumb. Bu't
these two hands di er somewhat more from the third hand. This is
because for the third hand, the distance between the thumb ad the
index nger and the distance between the ring nger and the pinky
is much larger than the respective distances for the rst twoimages.
Hence, we expect the shape distance between the third hand drone
of the rst two hands be twice as big as the shape distance beteen
the rst two hands.

In Figure 3.9, we see the result of the region based?-distance. This
distances is measured as the area of the symmetric di erencef two
shape images To compare this distance to the morphing distance,
we minimized the region based distance with respect teotation and
translation (cf. (2.29)). As you can see, this distance is very sensitive
to local deformations like the bending of the thumb or the stretching
of thumb and pinky.

Computing the geodesic on the shape spac®, via the path shorten-
ing method results in the three morphings of Figure 3.10. For the
rst two shapes (rst row in Figure 3.10), this morphing look s very
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Figure 3.9: Region based distance. The region based distance is
looking for a rotation and translation such that the area of the sym-

metric di erence is minimized. This symmetric di erence consists of
the following two components. The rst one (green) represeis the

region of the rst shape that is not a part of the second shape.The

second component (red) is the region of the second shape tha not

part of the rst shape
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Figure 3.10: Morphing paths between three hands. Between
the three hand shapes, there exist three di erent morphing maths.
The morphing between the rst and the second shape (rst row)
results in a slight bending of the thumb. For the second and tre
third morphing paths, a thickening of the thumb and the pinky is
necessary in order to minimize the geodesic length of the clsen
preshape manifold.
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natural. But if we consider the morphing between the third shape
and either of the rst two shapes, this morphing looks less néural.

The thumb and the pinky for example thickens during the morphing.
Hence, the morphing can cope with some restrictions of the igion
based L 2-distance, but it is still not perfect. On the other hand,

we are only interested in the distance and whether this distace re-
ects the object similarity that humans would perceive. The three
pairwise distances de ne a triangle in the shape space thatan be
isometrically embedded into R?. Doing this, results in two di erent

triangles, one for the region based distance and one for the anphing
distance.

As you can see in Figure 3.11, the morphing distance resultsnia
triangle in which the rst two shapes are closer to one anothe than
the third shape. Hence, the morphing based distance resultin a
more descriptive triangle than the region based distance. A a result,
we assume that the metric induced by the minimal length of gedesic
based morphing is more descriptive than the mere region basel 2-
distance.

3.4.2 Path-Shortening Method vs. Shooting Method
Symmetric Behavior

Now, we like to address the di erence between the computatia of
the geodesic with respect to theshooting method and with respect
to the proposed path shortening method In Figure 3.12 the results
of both approaches are shown for the exemplarily morphing fom a
seahorse into a star sh. We choose this speci c example becse the
distance between these two very dissimilar shapes is largeHence,
the geodesic re ects the structure of the preshape manifoldC; more
than the small distance for the hand shapes used in Section 8.1.

The rst two rows of Figure 3.12 show the result of the shooting
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Figure 3.11: Induced Metrics of Dierent Shape Spaces.

The pairwise distances of the three hand shapes is represett as
a triangle in the real plane. The left triangle represents the metric
structure of the region based stochastic shape space. Thegtit tri-

angle is shown with respect to the the shape spacg,. The metric
structure of S; detects a higher dissimilarity between the rst two

shapes and the third shape.

Figure 3.12: The Computed Morphing Paths. The morph-
ing of a seahorse towards a star sh is calculated via two di @ent
methods. The green shape symbolizes the initial value of theised
methods - these shapes were not altered. The rst two rows she
the results of the shooting methodstarting at the seahorse(1st row)
and the star sh (2nd row). The variational path-shortening method
(3rd row) xes both the seahorseand the star sh.
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method whereas the third row shows the geodesic computed with re-
spect to the variational path shortening method The rst row shows
shapes on the morphing path that starts at the seahorse shapand
for the second row the computation started at the star sh shape.
All these morphings are valid geodesics but the calculated legn-
ments, i.e., the chosen star sh preshapes are dierent. Ths leads
to a self-intersection in the rst cases, whereas in the thid case, the
tail of the seahorseunrolls in an expected natural manner. This is
due to the dierent alignments of the target shape. It is easy to
see that the variational method moves the tip of the tail towards
the tip of one of the ve star sh extremities. Moreover, the rst
two geodesics provide a path length of 5.5447 and 5.5431, witeas
the third geodesic has the length 4.6371. Therefore, the shing
method does not only get stuck in a local minimum but also it dces
not provide for symmetric results. In this example, we used adis-
cretization of N = 1000 for the preshapes. Therefore, there exist
1000 di erent alignments for the target preshape. Calculaing the
geodesic distance between the preshapes with respect to alf these
1000 alignments, we could con rm that the distance computedby
the variational path-shortening method represents the global mini-
mum with respect to preshape alignment. Thus, the calculaton of
realignments in Line 10 of Algorithm 3 serves the purpose of nding
the minimal distance between two given shapes. Overall, thero-
posed variational path-shortening methods should be favaed over
the commonly used shooting method in order to obtain meaninéul
symmetric distances.

Run-time Behavior

In the last test, we showed the superiority of the path-shortening

method over the shooting method with respect to its exactness. Now,
we will show that the path-shortening method is also much fager

than the shooting method.
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Figure 3.13 shows the computation times of the morphings preented
in Figure 3.12. It varies from the computation time in [51] because
we use highly resoluted preshapes and the methods stop onlf/they
can provide a very accurate result. On the horizontal axis tre dis-
cretization resolution of the geodesic is noted. This is theamount
n of intermediate shapes that both methods are using. First ofall,
we see that the computation time is not symmetric for the shoding
method. Moreover, the computation time varies by 20 to 30 pecent.
This is due to the fact that the shooting method depends highy on
the curvature at the starting shape. Hence, not only the resit of
the shooting method but also the computation time is asymmetic.

The variational method on the other hand is symmetric and thus,
the runtime does not depend on the starting shape. In additim, the
calculation time is less than 100 milliseconds in the highlyresoluted
case. If we use the same resolution as in [51], the variatiohanethod
takes only a few milliseconds. To conclude our observationghe vari-
ational path-shortening method does not only re ect the morphing
induced shape distance in the sense that it provides for symetric
results. It is also faster and thus computing distances as aength of
geodesic becomes attractive for the Computer Vision eld ofShape
Analysis.

3.5 Limitations of Morphings

We saw that shape dissimilarity measured as the geodesic lgth be-
tween two shapes on the orbifoldS; re ects the perceptional dissim-
ilarity of humans better than a mere region basedL 2-distance as in
Chapter 2. Nonetheless, it is has its limitations. First of dl, we only
computed a geodesicas de ned in De nition 12. Such a geodesic
ful lls the Euler-Lagrange equation of the energy functional (3.7).
Thus, it may just be a local minimum. Whether it is a global mini-
mum is not clear at all. As a consequence, we cannot be sure if the
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proposed method really computes the distance as de ned in (8).

Another problem that already appeared is due to the chosen ne-
resentation of preshapes. In Figure 3.10, we saw already thahe
morphing may not be natural in the way that morphing one hand
into another results in thickening and afterwards shrinking of cer-
tain ngers, e.g., thumb and pinky. This is in fact the result of the
chosen shape representation. The problem of this represeation is
depicted in Figure 3.14. In this gure, we show how di erent p oints
on the rst shape are moved in the plane during their morphing. As
a result, we receive a set of points of either shapes that areetin
correspondence with respect to the morphing. This means thiafor
everyt 2 [0;2 ] the following two points are set in correspondence:

X = co(t) = € oV and yi = ¢p(t) = € 1O

where¢; is a representing curve of a shape and; : [0;2 ]! R isthe

respective element of the preshape spac€;. Since the curves are
represented by arc-length, for arbitrary s;t 2 [0;2 ] the following

holds:

dist(co(s); co(t)) = js  tj =dist( ca(s); cu(t))

where dist( ; ) denotes the distanceon the speci ¢ contour. Because
of this distance preserving property, we obtain a sort of cotour-

based rigidity. If we choose one specic correspondence beeen
points of di erent shapes, all correspondences of one contw with

respect to the other is already de ned. For the example of thetwo

hands on the left hand side in Figure 3.14, this works quite wi

But for the toy example on the right hand side of this gure, th e
restriction of this rigidity comes to light.
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While for the region based L2-distance of Chapter 2 a rigidity of
the whole shape emerged (cf. Figure 3.9), we are here confiedl
with only a parameterization based rigidity. In the next chapter, we
will address this problem. Instead of computing a whole morging,
we will only be interested in nding correspondences betwee points
of di erent shapes. This approach is also known ashape matching
since we are looking for points that are similar to one anothe i.e.,
points that match.
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Figure 3.13. Run-time for Dierent Morphing Methods.

The computation time in seconds to calculate geodesics is pited
against the discretization size of a morphing. The variational method
has two advantages with respect to its computation time. Symme-

try: The geodesic calculation does not depend on the starting sipe,
whereas the run-time for the shooting method varies by ca. 2%.
Run-time: The variational method is faster by a factor of 1000.
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Figure 3.14: Point Correspondences for Shape Morphing.

A morphing transforms one shape into another. Thus, every pmt x
of the rst shape is moved via this morphing onto a point y of the
second shape. These paths are shown for some chosen pointsor F
the two hands, thesecorrespondencesx $ y re ect a certain local
similarity . For the shapes on the right hand side, this similarity does
not exist any more.
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Chapter 4

Shape Matching

In the previous chapters, we introduced two dierent methods to

measure the dissimilarity of shapes. This resulted in de nhg a met-

ric d( ; ) that assigns a non-negative distance to an arbitrary pair d

shapes. In this chapter, we will make use of another distancéunc-

tion. It di ers from the previous distance function in the se nse that

it is not a metric any more. Instead it is a relaxed version of amet-

ric in the sense that the triangle inequality of De nition 2 d oes not
hold any longer. Such a concept is known as pseudo-metricand has
already been studied in the form of region-based -distances. Espe-
cially for level set approaches, pseudo-metrics have beenccessfully
applied [28].

In order to de ne this new distance function, we consider theprob-
lem of shape matching which is very popular in Computer Visio in
order to classify a selection of di erent shapes. Like in thepreced-
ing chapters, we still represent a shape as a mapping that isalned
over the circle St. The main advantage over the concepts described
above is that the invariance with respect to translation, rotation or
scaling will be directly incorporated into the description of shapes.
Hence, we do not have to consider orbits with respect to somergup
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operations. In practice, this means that we use certain featres that
describe thelocal appearanceof every contour point. Instead of rep-
resenting a shape as a sequence of planar points, it is now meléd
as a sequence of feature values. A very prominent feature ishé
curvature. This feature has certain advantages over other features.
First of all, it is easy to compute and secondly it only depend on
a small neighborhood of a given curve point. Thus, areas of th
shape that are further away from a speci ¢ point do not disturb the
computation of the curvature at this point.

This chapter is organized as follows. In Section 4.1, we adéss the
problem of shape matching with respect to an arbitrary preséected
feature. There we recapitulate the development of shape mahing
and explain our approach which is an important extension of te
work of Sebastianet al. [85] in the sense that our approach is invari-
ant with respect to re-parameterization. A closely related approach
has been rst introduced by Tagare [90], but the model of Tagae is
di cult to handle since instead of a matching function, Taga re used
a matching relation that in general can neither be representd as a
matching function from the rst shape onto the second shape rr
vice versa.

In Section 4.2, we present a collection of di erent features Espe-
cially, we present a method of computing the curvature via anin-

tegration process. As a result, the presented method to comye a
curvature is numerically much more stable than classical aproaches
which involve the computation of the second derivative. In Sec-
tion 4.4, we present the classical method oDynamical Time Warp-

ing (DTW) and the drawbacks of this speci ¢ method which results
for example in cubic runtime with respect to the input size. In or-
der to reduce the runtime, we present two di erent methods in the
succeeding sections.

In Section 4.4.1 we present a very rapid DTW approach which to
our knowledge is the fastest DTW based method and in Section .5
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Figure 4.1: Shape Matching. Left hand side: Matching two
shapes amounts to computing a correspondence between paics
points on both shapes. Right hand side: Instead of looking for a

mapping M : C; ! Cp, a matchingm : St ! S!is dened on the
parameterization domains.

the problem is cast agraph cut problem In Section 4.6, we provide
two di erent tests on publicly available databases.

4.1 Pseudo-Metrical Shape Spaces

The problem of nding a match between two di erent sequencesof
data has a rather long history in Computer Science. A very clasic
approach is the nding of a substring in a given text string. But be-
sides these exact matchings, the looking foapproximate matchings
has also become an import task. One of the rst works addressig
this problem was [97]. Here a metric on the set obtring characters
was assigned to model errors that may occur during the input
the search string. To nd this elastic match, dynamic programming
techniques were applied. This technique has a long traditio in the
elds of string alignment, speech recognition, stereopsisand hand-
writing recognition [4, 55]. In [22], this concept was rst applied
to the matching of shapes. To this end, we assume that a shape i
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represented as a closed loop in a preselected feature spdeavhich
is equipped with a metric d( ; ). F can be any metric space but in
practice, F is some Euclidean space lik&R or Rf. In order to com-
pute the similarity of di erent shapes e ciently, we assume that the
metric d of F can be computed very rapidly. Further on, we assume
that transforming an arbitrary curve ¢ : St ! C into the feature
loop f : St'! F can be done easily. Examples of sucfeatures will
be presented in Section 4.2. For now, we want to de ne the germel
concept of feature based shapeshat di er from the shape concept
of the previous sections in the sense that we do not need any gup
operation in order to abstract from the contour:

De nition 13. A metrical space (F; d) equipped with a mappingF :
Imm(S; C) ! Map(Sh; F) is called afeature spaceand the mapping
F is called its feature transformation. Further on, we call F invariant
with respect to the group SE(2) of rigid body transformations if for
any curve c 2 Imm(Sl;C), rotation R 2 C and translation T 2 C,
the following holds

Flc()] F[R c()+ T] (4.1)

From now on, we assume that we deal with a preselected feature
space F;d;F) such that F is invariant with respect to the group
SE(2) of rigid body transformations. Besides rigid body moions,
other shape transformations are possible. In this chapter, we want
to detect local stretching or contraction. Hence, we are loking for a
direct correspondence mapping which maps the points of onehgpe
to the correspondent points of the other shape. Since the pats of
a shape form an arbitrary subset of the planeC, it is easier to nd
the correspondence directly on the parameterization domai S (cf.
Figure 4.1).

To avoid self-occlusions during the matching process, anatching
can be modeled via an orientation-preserving di eomorphisn m :
St1 stthat maps points of the rst parameterization domain to the
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Figure 4.2: Matching Loop. Matching points on either of two
shapes is equivalent to a cyclic path on a torus. If two curvescy
and c; are both parameterized over a circle. The torus representsla
possible correspondences. The graph r) of a matching m : St !
S' describes a loop (blue) that covers both parameterization gaces
(horizontal and vertical red loops) exactly once. In this gure the
matching loop of the matching m(s) := s is sketched.

corresponding points of the second parameterization domai On the
space of these matchings, we will de ne a functionak : Di *(S!) !
R, that measures the quality of a matching. The goal of a matchiry
algorithm is to nd the minimum of E which will mainly measure the
L 2-distance of the feature di erences. This results in the folowing
functional:

z
Bfon (M= d(fo(s)ifs m(s)’ds (4.2)

This functional was used by Cohenet al. [22]. But it has the dis-
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advantage that it is not symmetric in the sense that the equaion
Bf ;,(m)= B ; (m ') does not hold in general. To overcome this,
Sebastianet al. [85] and Tagare [90] propose di erent approaches.
Here we follow the concept of Tagare who reformulated the fuo-
tional (4.2) as a curve integral on a torus. This is possible lecause
the graph ( m) of a matching mappingm : St ! St can be repre-
sented as a closed loop on the product spacg S' which describes
a torus (cf. Figure 4.2).

To reformulate (4.2) as a line integral has the important advantage

that the resulting energy functional is not only symmetric, but also

independent of the parameterization of (m). Hence, we use the
following energy functional:

Z
Efy, (M) = Sld(fo(s);f1 m(s))2IO 1+ mqs)2ds (4.3)

In this functional, the data term d(fo;f1)? is therefore integrated
along the matching loop s 7! (s;m(s)). Since we use a line inte-
gral instead of a pureL ?-distance like in (4.2), the smoothness term

1+ m@is directly coupled to the data term. As a result, we do not
need any additional parameter in (4.3). Using this energy functional,
a distance function for shapes is induced as follows:

q
De(co;c1) = min E

4.4
m2Di ( S (4.4)

F
F fcoliF [ca] (M)

The fact that (4.3) is parameterization invariant with resp ectto ( m)
is very important from an implementation point of view, because
we do not have to take care thatm or ( m) is been parameter-
ized in a certain sense. Di erent parameterizations will lead to the
same energy functional. The freedom in parameterization rduces
the amount of restrictions for designing an e cient algorit hm. But
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Figure 4.3: Semi-metric. Here, we show an example of three
shapes such that their pairwise distance does not ful Il thetriangle
inequality. If we denote the shape of the dog byX and the shapes
of the two faces asY resp. Z, we obtain the following distances:
De(X;Y ) =453, De(Y;Z) =79 and Dg(X;Z) = 547. Obviously,
the triangle inequality De(X;Z) Dg(X;Y )+ Dg(Y;Z) does not
hold. As feature space-, we used thelnner Shape Contextpresented
in Section 4.2.2.

this freedom has to be paid o by loosing a property that all the
shape distances presented above had. This is the triangle éguality
which does not hold any more. An example is provided in Figuret.3.

After presenting the general concept of shape matching, we ant
to present two di erent shape features in the following secton. In
Section 4.3, we will then address the problem of solving thigroblem.
In that section, we will propose purely discrete approaches These
methods involve the computation of either a shortest path orthe
minimal cut in a graph.

4.2 Shape Features

In the last section, we introduced the functional (4.3), which mea-
sures the quality of a matchingm. This functional highly depends on
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the preselected feature spaceH; d;F). There exist numerous shape
features which capture the local shape by means of dierenal or
integral invariants [63], the most commonly considered desriptor
being curvature [69]. In this work, we are not focused on then-
troduction of new invariants, but rather on the question of how to
e ciently compute a matching given any local shape descriptor.

For the sake of completeness, this section presents certatommonly
used features like the curvature and thelnner Shape Context (ISC).

Curvature is a good feature for shapes but it is not very popuar be-
cause normally curvature is computed via a second derivatig. This
computation is very sensitive to small noise. In Section 4.2 we will
present a novel method to compute the curvature at a certain int
that results in an integration process instead of two di erentiation

processes. Hence, it is much more robust than the classicaliature
computation. For the computation of the ISC, we follow the ideas
of [60] which we will brie y present in Section 4.2.2.

4.2.1 Integral Curvature Computation

The shape matching as introduced above relies on local featas that

are invariant with respect to translation and rotation. In p ractice,

these features need to be computed in a robust manner. To thiend,
Manay et al. [63] introduced di erent features that were all obtained

by integration processes and since these features were imant under

rigid body motions, they were calledintegral invariants. One of these
integral invariants approximated the curvature by calculating the

intersection of the shape's interior and a circle of xed radus r (cf.

Figure 4.4). In contrast to [63], we perform a Taylor approximation

of the invariant which is exactup to the rstorder. As a consequence,
we obtain a method to compute the curvature robustly by perfaming

an integration instead of a di erentiation scheme.

If we now consider the closed curvec ; St ! C with its curvature
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Figure 4.4. Curvature calculation. The curvature at any point
along the curve can be estimated from the intersectionA; of a ball

with radius r centered at the curve point with the interior of the
shape.R = 1 is the radius of the osculating circle (cf. (4.5)).

functon :S'! R. Near the point c(t), the curve ¢ can be de-
scribed via its osculating circle of radiusR(t) := % In fact, the
Greek used this concept to measure the curvature of a curve. fie
osculating circle is an second order approximation ot. Let us now

consider the set
A (t)= fx 2 int(c)jkx c(t)k rg

that consists of all points inside the curvec that are also closer to
the curve point ¢(t) than a preselected radiusr. Then, the area of
this set A, (t) can be approximated via
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Z, p h p i
area(A;) RZ 2 R rz 24
a
a a
_§(R2+ r?) chos % r2cos ! -
2Ra+ a R2 a2+ a2
| {z }
=R
a a
=R? - cos! = +r? - cost! = Ra
2 R r
. a a
=R?sin ! = +r?sin!? = Ra
R r
r
2
whereasa=  r2 2r—2 . Introducing ' :=sin ! >x » We receive
area(Ar) R ? T , R
— — sin * —cos + = —cos( ):
r2 r R 0) 2 r )

Because ofg = 2sin(’ ), we nally get the simpli cation

area(A,) ' cos() :

1
r2 2 sin( )2 sin() 2

The linear Taylor approximation of the right hand side leads to the
expression % . Therefore, the curvature can be approximated
via

2 3 3arealA,)

Note that the quadratic approximation error can be reduced by de-
creasing the radiusr. Moreover, =lim o2sin 3~ 32%aAd)

In our implementation, we used the right hand side of (4.5) tocal-
culate the curvature function of a given curve. In Figure 4.5 the
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Figure 4.5: Gaussian noise. The matching between an original
hand and a hand added with Gaussian noise is visualized. From
left to right the standard deviation is =0;05;1;3;4. At =4 a
matching starts to collapse (cf. point 4).

robustness of these feature with respect to high Gaussian ige is
shown. For this test, we started with one contour and added inthe
direction of the curve's normal Gaussian noise of a preselesd stan-
dard deviation . We observed that even at the presence of rather
high Gaussian noise, the matching is quite accurate. The mah-
ing starts to collapse for = 4. But at this point it is di cult to
recognize the represented shape even for a human.

4.2.2 Inner Shape Context

The robustness of theintegral feature lies in the fact that we consider
a larger neighborhood of a given contour point. A similar corcept
was used by Belongieet al. when they introduced their Shape Con-
text Feature in [5]. It involves the pairwise distances between all
contour points: For every point of a given contour, a histogam is
computed that re ects the shortest paths to all other points of that

contour. Hence to every pair of points, the distance and the agle
with respect to the contour's tangent is computed and storedin a

preselected histogram. This idea is sketched in the left hath side of
Figure 4.6.
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Figure 4.6: Shape Context. To compute the Shape Context
distances from one point to all the other points of the contou are
stored in a histogram (left hand side). The Interior Shape Context
considers only the shortest paths inside the shape. Hencd,is robust
to articulations like the position of the bunny's ear.

This feature is very robust but it has also certain disadvantages. One
of them is the fact that articulated shapes exhibit very di e rent fea-
tures. As a consequence, those shapes are dicult to match. Bt
since articulated shapes are very natural, Ling and Jacobs qpposed
in [60] an extension of the original shape context. Instead fothe Eu-
clidean distance that was considered in the original shapeantext,
they only considered paths that are inside of the given shapécf.
right hand side of Figure 4.6). By considering only theseinterior
paths they came up with another shape context { theinterior shape
context Since this feature turned out to handle the matching of dif-
ferent shapes very well, we will use this feature in the follwing. In
fact, the methods that we will present in Section 4.3 are indeen-
dent of the preselected feature and the focus of the next seion is
to present e cient methods for shape matching for every posble
feature space F;d;F).
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4.3 Discrete Approaches

In the last sections, we addressed the problem of matching tavshapes
with respect to a preselected feature space; d; F). The focus of this
section is to minimize the energy functionalE of (4.3). From now on,

we are only interested in purely discrete approaches. Tradionally

the problem of shape matching has been cast into a shortest pia

problem through a two-dimensional planar graph, the edge wights

of which incorporate the distance of the local features [6539, 3, 2,
38, 57, 93, 85, 73].

This rather general approach is known asDynamic Time Warping
(DTW) and will be presented in Section 4.4. Another approachthat
we rst presented in [82] results in nding the minimal cut in a pla-
nar graph. This approach will be presented in Section 4.5. Bth
approaches, the DTW approach and the graph cut approach su es
from a rather high runtime. Thus, it is very costly to compare highly
resoluted shapes. To overcome this drawback, we use the fathat
the underlying graphs of both approaches are planar. This lads to
di erent methods of reducing the involved runtime signi ca ntly by
exploiting this important property of planarity. These met hods are
presented in Sections 4.4.1 and 4.5.1. If we want to comparéhapes
that are discretized by N feature points, the resulting methods com-
pute the global minimum of E in almost quadratic runtime, i.e. in
O(N?log(N)). In Sections 4.4.2 and 4.5.2 we provide a runtime
comparison of all the presented methods.

4.4 Dynamic Time Warping

Let us assume that two curvescy;c; : St ! C and their feature
loops fo;f1 : St F with respect to a feature space F;d;F) are
given. The goal now is to nd a matching m : St | S! that min-
imizes its path length (4.3) on a torus. To simplify this problem,
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let us also assume that we already know an initial matching, mmely
m(Xp) = X1. This means, we know thatfy(xg) should be matched
to f1(xy). If the matching torus of Figure 4.2 is now cut open along
the two red coordinate loops, we obtain a at area [0;2] [0;2 ]
and the closed matching loop becomes a shortest path from (0)
to (2; 2 ). Since the problem of nding a shortest path through
a graph has been intensively studied, it makes sense to refmu-
late the problem into a graph theoretical problem. Therefore, we
assume that each of the two feature loops is given as a discieéd
sequence olN feature points. This means that the parameterizing

we expand this notation such that x; is de ned for any i 2 Z via
Xi = X(i mod N)-

In order to nd the matching m, we have to nd a shortest path
within a graph of O(N?) vertices (cf. Figure 4.7) that we will now
construct. The verticesv;; 2 V represent a possible match between
fo(xi) and f 1(xj) and the integrand of (4.3) at this pointis (fo(X;)
f1(xj))2. Therefore, the weight w of any edge (i ; Vi) carries the
value of the path integral along this edge:

(Fo(xi) f10G)%+(folxk) fi(xi)? k i
2 |

W(Vi;j; Vi) =

In order to allow only paths from (0;0) to (2 ; 2 ) that represent
a di eomorphism, only those edges are allowed that sample bib
coordinate axis monotonically. As a consequence, we allownéy hor-
izontal edges to the right, vertical edges towards the bottan and
diagonal edges that combine a horizontal and a vertical step

Hence at each point-match, there exist only three di erent ways to
proceed on the two curves. These three ways are representeg the
following three outgoing edges:

1. One can proceed only on the rst contour, which leads to edgs
of the form (vi;j;Vi+1:j),
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2. one can proceed only on the second contour, represented by
edges Vi;j;Vi;j+1) Or

3. one can proceed one step on both contours. This is repregded
by edges of the form ¢;;j; Vi+1:j+1).

The problem of nding a shortest path from (0;0) to (2 ; 2 ) in the
continuous plane can therefore be cast as nding the shortdspath
from vpo to vy:.n in the de ned graph G = (V;E;w). This can be
computed very e ciently in  O(N ?) time steps [97].

This e cient computation relies extremely on the fact that w e know
an initial correspondence. This is in general not true.Dg(Cp; €1) can
therefore be calculated by nding an initial correspondene (a;0)

and afterwards looking for a path of minimal weighted length from

(a;0) to (a+ N;N). Since there is no natural way in nding such
an initial point-match, computing the shortest circular path on the

torus could be carried out with a brute-force method, where rst an

arbitrary initial correspondence is chosen, which is used fa starting
point for computing a best matching afterwards. After repeating this

for all possible initial correspondences, the global optimal match is
computed at the cost of O(N ) computation steps [65, 38]. This can
be achieved by expanding the involved graph to afl +1) (2N )-grid

(cf. right hand side of Figure 4.7).

In this section, we will show that the shape matching problemcan in
fact be solved inO(N ?log(N)). We developed two di erent methods
that have this property. One method is an extension of [61] tlat
applies a binary search to the DTW approach. Another approat
is based on a reformulation of the shortest path problem as amph
cut problem. This will be the focus of Section 4.5.

99



C1 C1

Figure 4.7: Shape Matching Graph: Left hand side: Matching
Co onto ¢; results in nding a shortest path in a regular graph. To
this end, the node information have to be carried forward to te
right and to the bottom (blank nodes). Right hand side: To nd the

initial match, the graph has to be expanded to the right.

4.4.1 E cient Shortest Cyclic Paths on a Torus

As we have seen in Section 4.4, the minimal matching of planar
shapes can be cast as a problem of nding the shortest path trough
a graph. This graph is spanned by the two shapes, where the nas
of the graph encode the local similarity of respective point on each
contour. While this problem can be solved using Dynamic Time
Warping, the complete search over the initial correspondene leads
to a cubic runtime in the number N of sample points.

We propose an algorithm to determine this shortest cycle whih has
provably sub-cubic runtime. In Section 4.4.2, we will see tlat this
method is faster than all other methods presented in this setion. To
the best of our knowledge, there is no algorithm that is faste than
the one we are presenting here.

When searching for the shortest circular path, we can restigt the
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Figure 4.8: Search area. @ The path search is carried out on a
graph of twice the size of the input matrix. A viable solution has
to start in the top-left blue area and end at a matching node in the
bottom-right blue area. The three allowed directions of the edges
are indicated with the three arrows on the left side.

search w.l.0o.g. such that the start-node of the path is of theform
Vio, I =0;:::;N 1. The corresponding end-node is thervi; n:n
(see Figure 4.8).

In the description of the algorithm for computing the shortest circu-
lar path, we will apply the following theorem:

Theorem 4. Let G = (V;E;w) with V = fvjg; be a graph and let
P1 = Vi, i1l and p2 = v, 1iiv;,, be paths of minimal length. Then
we can state that ifp; and p, have two nodesv, and vq in common,
there is a path pd = vy, :: -V, with the same weighted length apy,
which has a common sub-patlv,  vq with path ps.

This theorem is based on theprinciple of minimality for shortest-
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path methods, namely that any sub-path of a minimal path is itself
a minimal path. A direct consequence of this theorem is that or
any two minimum-length paths pi; pp, there exist two paths p?; pd
with the same start and end nodes, which cross at most once. Tk
property allows us to reduce the search area by constrainingt on
each side with a previously computed minimum-cost path.

The algorithm for computing the minimum cost path vi.o  Vi+n:N
with unknown i 2f0;:::;N 1g proceeds as follows.

Step 1: The shortest path p; from vp.p to vy:Nn IS computed
with a standard DTW algorithm. Furthermore, we de ne the
path p; as a copy ofp;, shifted by N elements in thei-direction,
i.e., VN0 von:n . The paths p and p; are depicted in Fig-
ure 4.8 as the bold path and the dashed path, respectively.
Note that these two paths constitute boundary paths which
reduce the search area from 82 to at most N2+ 2N nodes.

Step 2: This step makes use of previously de ned left and right
bounding pathspy = vi.0  Visn:n @d pr = Vi VieNN -
In the rst iteration, the paths are taken from the result of

Step 1, so thatl = 0 and r = N. In later iterations, other

bounding paths will be used.

We now compute a shortest-path tree, starting from the middle
node Ve = V(i+r)=2,0 at the top side of the graph (Figure 4.9).
In one run of the DTW algorithm, we obtain all shortest paths

Considering Theorem 4, we can limit the DTW computation
to the area between the two bounding pathsp;; p: .

Step 3: If we consider the shortest paths between/; and the
bottom side of the graph, we see that the pathv, Vis NN

obviously has a common sub-path withp,, since both paths
end at the same node. As we consider destination nodeg:y

with k > 1 + N, there is generally a largestk® with | + N
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Figure 4.9: Step 2 and 3. A shortest-path tree rooted at v, =
V(i+r)=20 IS computed. The right-most node vken for which v
vion Still has a sub-path with v; is determined. The shortest path
to this node is denoted asp,_. Similarly, pr is determined as the
left-most path that still has a sub-path with p;.
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Figure 4.10: Step 4. Given p; and p;, we know that all shortest
circular paths ending in range R include the sub-path v, Ve.
Hence, build a shortest-path tree, rooted atv,, in the indicated
direction on the shaded area. By combining these paths withhe sub-
path v4 Ve and the shortest-path tree belowve, all circular paths
through the range R can be obtained. The pathp? is the shortest
circular path vgo N0 Vken, Which will be used as a bounding path
in the following recursion step.

kK (1+r)=2+ N so that the shortest path v, vy still
has a common sub-path withp,. Let us denote the path from
Ve to vion aspy, like it is depicted in Figure 4.9.

Similarly, we can nd a smallest k®with (1 + r)=2 + N
k% r + N so that the shortest path v.  viooy still has
a common sub-path with p,. This de nes the shortest path
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sub-path of p, and pr. By denoting the rst node of this
sub-path asv, and the last node asve, the common sub-path
of pr and pr is v, Ve. If the shortest path from vj,o to
Vi+N:N passes through the area bounded byr and p,, we
have therefore found someinitial point-matches of the shape
matching problem, namely any vertex on the path v, Ve.
Hence, this subproblem can be solved in one single DTW step.
Since we have already computed a part of this DTW step, it
su ces to use DTW to compute a shortest-path tree, rooted
at v,, extending to the top-left and bounded by pr and p; (cf.
Figure 4.10). The shortest-path tree rooted atve, extending
to the bottom-right and bounded by pr and p; was already
computed as part of the shortest-path tree fromv, in Step 2.

We now have the shortest-path tree rooted atv, to all nodes
Vio, I + N 2 R and the shortest-path tree rooted at v to all

nodesv;.n, i 2 R. By considering the sum of the cumulative
costs for pairs of nodes;.o; Vi+ n:N , We can identify the shortest
circular path for the node range R. A similar process can be
carried out to nd the shortest circular path for the node ran ge
L =fk%:::;1+ Ng(cf. Figure 4.10).

Finally, we use the two shortest-path trees like above to ex-
tract the shortest-circular paths p® = vyo N:O Vikon and
p|0 = Vkoo N:0 Vkoon . These two paths will constitute new
bounding paths for later processing iterations.

Step 5: The previous step has computed shortest paths for
the subgraph bounded byp, and p? and the subgraph bounded
by p® and pr. What remains, is the subgraph bounded byp?
and p?. Since we have already computed the shortest path
Veo  VerN:N denoted aspg, we can now divide the remaining
subgraph alongp. into two subgraphs, bounded by the paths
p’to pc and pc to pP. Both of these subgraphs can be processed
recursively by restarting the processing at Step 2 for each fo
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Figure 4.11: Step 5. All circular paths through the ranges L and
R are already computed. Only the shortest circular paths in the
range in between remain unknown. This range is processed nec
sively, rst processing the graph betweenp®and pc, and then between
pc and pf.

them. In the recursion, the newp, := plO and p; = pc for the
left subgraph, and p; := pc and p; = p? for the right subgraph
(Figure 4.11).

Each processing of Step 4 gives up to two candidate shortestrcular-
paths. Once the whole range of start nodes is processed, theaih
with the minimum-cost path is selected as the global solutio.

The question that we like to address now, is how e cient is the
proposed method to state-of-the-art methods. First of all, we will
prove that the worst case complexity of our method isO(N 2 log(N ))
whereN is the number of sample points on each shape. Afterwards,
a direct runtime comparison will be provided.
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The proposed method de nes a planar graphG = (V; E) on a rectan-
gulargrid V = fv;; jO i< 2N;0 j<N +1g. We are now look-
ing for a shortest path from v;¢ to vi+ n:n Wherei varies over the set

graph G.

Lemma 5. Let G°= (V2EY be a connected subgraph a& contain-
ing exactly b > 1 corresponding boundary elements, i.e.

Vio2 (VO B1), Vienwn 2 (VO By);

Then the algorithm nds the shortest path connecting an elerant
Vi:o 2 B1 to its corresponding elementvi+n:n 2 Ba. Moreover, for
the number of calculation stepsT (n;b) the following holds:

T(n;b) 2(log(b 1)+1) (n+ N(b 1)) (4.6)

wheren := jVY is the number of vertices inG°

Proof. SinceGPis a subgraph ofG, any shortest path given a start
vertex and a target vertex can be calculated within n calculation

steps using Dynamic Time Warping (DTW). An upper bound for

the runtime T(n;b) is clearly b n since every DTW run used by our
method computes at least one shortest path from an initial nale in
B1 towards the corresponding vertex inB,. These properties will
be used during the proof. We will prove this lemma by complete
induction over the boundary length b.

Initialization: For b= 2; 3; 4, the expression on the right hand side

of (4.6) is always greater thanb n. Sinceb n is an upper
bound of the method, (4.6) holds for these cases.
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Induction step:  Assuming, we have proven the upper bound for all
boundary lengths P ful lling 4  °<b. Now, we like to prove
this upper bound for b itself. First, the algorithm calculates
a shortest path from the central point of the boundary which
takesn calculation steps. By doing so, the graphGPis split into
a left and a right subgraph with n_ resp. nr vertices whereas
n.+ng n+2N. If Step 3 and Step 4 has to be applied, an
additional DTW run has to be computed. Overall, we obtain
the following

b+1 b+1

T(nb) T nL;T + T ng; +2n

2(log(b 1)) (n+ng+N(b 1)+2n
2(log(b 1)) (n+ N(b+1))+2n
2(log(b 1)+1)(n+ N(b+1)) 2(b+1)
2(log(b 1)+1)(n+ N(b 1)+

2(logb ) ® 1)

2(log(b 1)+1)(n+ N(b 1))

O
With this lemma, the worst case runtime of the proposed matching
algorithm can be characterized as follows.
Theorem 5. The proposed shape matching algorithm has a worst-
case complexity ofO(N?log(N)).

Proof. SinceG = (V;E) is a subgraph of itself with b= N boundary
elements andn N2+ 2N vertices, Lemma 5 guarantees that the
shortest path can be calculated in less than

(4N2+2N) (log(N 1)+1)

time steps. O
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4.4.2 Experimental Comparisons

The above bound of O(N?log(N)) on the computation time was
proven based on a worst case analysis. In practice, the comgation
time is well below this worst case bound: As discussed in Steg
of the algorithm, the algorithm cuts away parts of the graph, for
which it can immediately compute the optimal solution. For most
shape comparisons, such cases arise instantly, such thatefrecursion
terminates after very few iterations.

Figure 4.12 shows a quantitative benchmark test of the propeed
method and three state-of-the-art shape matching algoritims that
we like to present briey:

Dynamic Time Warping For every possible initial match v;.o, we
look for the shortest path from the point v;. to the point vi+ N0
within the graph G = (V;E). To nd a match, we always need
O(N3) calculation steps.

Branch and Bound This method [1] starts with the initial match-

shortest path within G passing throughsS. If the shortest path
is a valid matching, i.e. a cycle in the graphG = (V;E), the
method stops. Otherwise, S will be subdivided. The worst
case is still O(N3), but under certain conditions, an average
case of O(N?2log(N)) is possible [1].

Cyclic String Approach In [62], Maes presented a shape match-
ing approach that essentially uses Step 1, 2 and 5 of our ap-
proach. This approach provides a worst case complexity of
O(NZlog(N)).

For two shapes and an increasing discretization level whichranges
between 50 and 1000 points per shape, we compared the runtime
of the described methods. While all algorithms compute the ame
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Figure 4.12: Experimental runtime comparison. In contrast
to DTW, Branch-and-Bound and the cyclic-string approach [62], the
proposed method exhibits consistently lower runtimes, in @rticular

for larger problem sizes.
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matching, the proposed method exhibits consistently loweruntimes,
in particular for larger discretization. Moreover, it oer s a more
predictable performance, in the sense that the computationtimes
exhibit a smaller spread than those of Branch and Bound.

4.5 Shape Matching as Graph Cut Problem

While a shortest path through the shape matching graph can be
computed e ciently using Dynamic Time Warping (DTW), one of

the key drawbacks of this approach is that Dynamic Time Warp-

ing requires a corresponding point pair for initialization. The most

current methods therefore apply DTW for all possible initial corre-

spondences, and then select the minimum of all computed sht@st

paths as the distance between the two shapes. We presented ermf
the most e cient formulation in Section 4.4.1. But in this me thod,

too, the search for an initial point-match is done independeatly of

the search for the complete match. In the following, we want b

overcome this restriction.

Our goal is to develop a method that does not pursue a decou-
pling of the search for the initial match from the search of the
complete match. To this end, we show that shape matching can
be cast as a problem of nding a minimal cut through a network
G = (V;E;c;s;t). Such a network consists of a set of vertices/
that are connected via oriented edge€ V V whereas the source
s 2 V provides only outgoing edges and the sink 2 V only in-
coming edges. Every edgee = (u;v) is equipped with a positive
capacity c(e) 2 R* and we callC E an st-cut if there is no path
from the sources 2 V to the sink t 2 V in the reduced network
Gc = (V;(E nC);c;s;t). The problem of nding a minimal cut C
can then be formulated as:

A lot of classical Computer Vision problems have recently ben ad-
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Problem 1 Minimal Cut
Input: Graph network G = (V;E;c;s;t) =
Output: st-Cut C  E which minimizes ,. c(€)

dressed by graph cut approaches, because they allow to e cialy
solve the underlying labeling or correspondence problemsia glob-
ally optimal manner. In particular, researchers have emplged
graph cuts for stereo reconstruction with convex neighborlood po-
tentials [13], for image segmentation [11, 41, 76], for imagand video
synthesis [56] or for multi-view reconstruction [88, 96].

We will now show how the shape matching graphG of Section 4.4
can be transformed into a network Z on which we can apply a
graph cut method in order to solve the shape matching problem
The graph G = (V; E;w) of the DTW approach comprises a planar
grid structure and in order to nd an optimal match, we look for
shortest paths from vio to vi+n.n for all possiblei = 0;:::;N 1.
If we now identify any start-vertex vj.qo of the graph with its target-
vertex vi+n:N, the graph G becomes a cylinder and the formerly
shortest path describes a shortest cycle on this cylindricgraph
Z = (Vz;Ez;wz). Note that every such shortest path separates the
two outer boundaries of the graphZ (green edges in Figure 4.13).

It is known that also cylindrical graphs like Z can be embedded
into the plane. Thus, the graph that we obtain after identify ing
the corresponding vertices can still be embedded into the pine C.
This means that the edges cut the plane open into di erent fa@es
that we pool in the set F. An import property of planar graphs
is that two dierent edges may not cross each other. Therefore,
every edgee 2 E; has a well-de ned left facef|(e) 2 F and a well-
de ned right face f;(e) 2 F. To the cylindrical graph Z, we can
therefore de ne the dual graph Z := (F;E,;w,) by introducing
dual edgese := (f,(e);f(€)) which connect the left with the right
face of an edge. To every dual edge we canonically assign the
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Figure 4.13: Dual Graph. A matching path in G (left hand
side) describes a cycle on the cylindeZ (right hand side). Z is
constructed by identifying the vertices along the red edges The
green edges form the boundaries df. Cycles inZ are equivalent to
S T-cuts in the dual cylinder Z de ned by the dashed edges.

weight w, (e ) := wz(€). Additionally, the two faces that are formed
by the outer boundaries of the cylinderZ will be denoted as source
S and sink T (cf. Figure 4.13).

Interestingly, Whitney showed in [99] that for any planar graph Z,
there is a one-to-one relationship between cycles od and cuts in
the dual graph Z . Therefore, the value of a minimal edge cut will
be Dg(fo;f1)? for given feature loopsfo and f1. Mathematically,

this can be summarized in the following theorem.

Theorem 6. Let fo and f1 be two feature loops with respect to a
feature space(F;d;F). Then, the following equation holds

X
De(fo;f1)? = min wz(e) (4.7)

C stcutof z € 2C

To solve this graph cut problem, we can use the method provide
by Boykov and Kolmogorov [13] which works very fast for shape
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Figure 4.14: Runtimes of shape matching. Here, the runtime
of the proposes graph cut method and the commonly known sho#st
path method using DTW is plotted against the sampling rate of both
given shapes. We can see that there are cases where the grapht ¢
method outperforms the DTW method and vice versa.

acquisition problems. In fact, a linear time could be empircally

observed. Unfortunately, this algorithm is not as quick as epected
for the dual shape matching cylinderZ . In Figure 4.14, we see that
for similar shapes the proposed method outperforms the claical
DTW method. On the other hand, for di erent shapes the opposite

is the case. Therefore, it looks like the graph cut method hadles
similar shapes quite easier than dissimilar shapes. This isecause for
similar shapesf g; f 1, the distance D (f o; f 1) and thus the maximum

ow is quite small. In other words, the maximum ow is close to

the initial ow which is zero. Therefore, the amount of augmented

paths that has to be examined by the graph cut algorithm is rather
small and the proposed method works very rapidly in comparisn to

the classical DTW approach.

Overall the observed results are encouraging in the sense ah the
coupling of the initial point-match search with the complete match-
search can be cast as a graph cut problem. Nonetheless, theats
graph cut method does not perform very well on this speci c gaph.
Hence, we have to develop another graph cut method that is bet
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ter designed for the shape matching graphZz . In Section 4.5.1 we
will show that by exploiting the planarity of the involved gr aph, we
are able to provide a very fast graph cut-based method for shae
matching. For example, this method needs onlyO(N 2 log(N)) com-
putation steps to compute a shape matching if both involved fapes
are discretized byN points.

45.1 E cient Planar Graph Cuts

In Section 4.5, we saw that the problem of shape matching can ®
cast as nding the minimal cut in a graph. In order to do this
e ciently, we want to present a fast graph cut method for plan ar
graphs. The method that we are about to present is based on the
graph theoretical work of Borradaile and Klein [10, 9] and leads
to an e cient method that we will then apply to shape matching .
In Section 4.5.2, we will provide a runtime test of this method ap-
plied to the shape matching graphZ of Section 4.5. For now, we
assume that we have to deal with a general planar graph netwd
G =(V;E;F;f|;f;c;s;t) where

V denotes the set of vertices,
E V V denotes the set of oriented edges,
F denotes the set of faces,
fi:E! F assigns to every edge itdeft face,
fr :E! F assigns to every edge itgight face,
c:E! R assigns to every edge a non-negative capacity,
s 2 V denotes thesource of the network and
t 2 V denotes thesink of the network.

To date the graph cut algorithm of Boykov and Kolmogorov is con-
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sidered to be the fastest existing algorithm for Computer Vision
applications [13]. Nonetheless, there is no known polynoral upper
bound for the runtime of the algorithm of Boykov and Kolmogorov.
A lot of e ort has been put into improving the runtime of maxim um
ow computation, by means of ow recycling [53], capacity scaling
[47] or multi-scaling [29]. While these strategies often lad to reduced
computation times, none of them reduces the worst case comgk-
ity of the methods that they were built on. The runtime tests of
Section 4.5 (cf. Figure 4.14) demonstrate the lack of a strog upper
bound on the graph cut computation time.

Nonetheless there are methods to compute the minimal cut in pv-
able polynomial runtime. In the following we like to briey p resent
the development in this area. A major milestone to solve the gneral
graph cut problem was the Min-Cut-Max-Flow theorem of Ford and
Fulkerson [36] which stated that the Minimal Cut  problem is equi-
valent to solving the Maximal Flow  problem. A ow f :E! Rj
assigns to every edge a non-negative value that is boundeddim
above by the capacity function c. Additionally, the amount of in-
coming ow to an edge should be identical to the amount ofoutgoing
ow : X X
8v2Vnfs;tg: f(e= f (e
e=(u;v)2E e=(v;u)2E
The problem of nding the maximal ow can then be cast as:

Problem 2 Maximal Flow
Input: Graph network G = (V; E'Fp;s;t)
Output: Flow f  cmaximizing  .y,e f (Vit)

The main idea to solve the Maximal Flow  problem is to start
with a ow f : E ! R{ that assigns O to every edgee 2 E and
then to augment the ow along paths from source to sink on whid
none of the involved edges are saturated, i.e.f () < c(e). This
augmenting path strategysolves the problem and if we are only using
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shortest paths, the problem can be solved in polynomial time[30].
Nonetheless, this runtime is in general too high.

On the other hand, Weihe showed [98] that an almost linear rutime?
is an upper bound for planar networks. Unfortunately, the proposed
method requires a rather complicated preprocessing step ahhence
is not ideally suited for practical implementations. To overcome this
drawback, in [9] a new method was proposed that uses a simpler
preprocessing step. The core idea of this method is to alwayaug-
ment the leftmost of all paths from source to sink. To this end, we
have to store all leftmost paths towards the sinkt in a suitable data
structure, namely in a tree spanning all vertices of the grapn. One
way to compute such a tree is theright- rst search . This is a depth-
rst search of the graph where we always consider the edge thas
situated as right as possible This simple method produces certain
di culties if there are clockwise cycles in the graph. Hence it makes
sense to eliminate these clockwise cycles prior to the compation of
the right- rst search tree:

Algorithm 4 Planar Maximal Flow [9]

Input: Planar Graph network G = (V; E;F;f;f(;c;s;t)

Output: Maximal Flow f :E! R*

: Remove from G all clockwise cycles

Initialize the ow f with O

while there is a non-saturated path fromsto t do
saturate the leftmost path from s to t

end while

return f

o ua kR wnNR

It has been shown that the elimination of clockwise cycles aa be
done quite elegantly by computing a shortest path tree through the
dual graph [9]. Therefore, Step 1 of Algorithm 4 is a preprocssing

1By almost, we are referring to the ®-notation, i.e., nlog(n) = &(n).
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Figure 4.15: Planar max ow method. Bold and dashed edges
indicate the spanning treesT and T resp. At every step, an edged of
the tree T is substituted by an edgee. When the method terminates
(bottom right), neither T nor T are trees anymore. Moreover, in
T a circle emerges which describes the minimal cut.
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step which can be computed inO(N logN). A challenging imple-
mentation task is in fact Step 4. Like any augmenting path metod,
it (cf. Algorithm 5) maintains a spanning tree T of all vertices V

to keep track of the augmenting path from source to sink e ciently.

Additionally, the method also handles a spanning treeT of all faces
F to support the updating scheme ofT. Since the graph is planar, all
edges which are not inT form the tree T (cf. Figure 4.15). Lines 8,
9 and 13 of Algorithm 5 take care of this invariant.

Algorithm 5  Implementation of Step 4 [9]
1: Let T be the right- rst search tree backward from t.
2: Let T be the spanning tree ofF consisting of all edges oE T.
3: repeat
4:  Augment path from sto t, update the ow f andletd = (u;v)
the closest edge tat which is saturated.

5. Let (fq;f,) the dual edged of d.

6: Lete =(fy;f3) be the parent edge off, in T .

7. Let e=(x;y) be the primal edge with respect toe .
8 T =T +1f(faf1)g T (fo;f3)0

90 T:=T f dg+ feg.

10: if f1is a descendent of , within T then

11 return f

12. end if

13: Reverse inT the edges along the path fromx to u.
14: until false

It has been shown [9] that therepeat -loop is repeated at mostO(N)
times and that the usage of Dynamic Tree [89] forT and Euler Tour
Tree [45] for T results in an O(log N )-runtime for the Lines 4-13.
Hence, the method computes the maximal ow inO(N logN).

Nonetheless, the test for the termination condition (Line 10) is a
bottleneck of Algorithm 5. The theoretical contribution of our work
is to get rid of the Euler Tour Tree and instead maintain T by an
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array which stores the parent of each face. Originally, the Hiler
Tour Tree was used in order to test Line 10 inO(log N). However,
modi cation and parent access (Line 6 and 8) of T then take the
same amount of time. We therefore propose an equivalent teson
T instead of T . We will present this alternative test and prove its
equivalence in Theorem 7. Instead of Lines 10-12, we perforrine
test of Algorithm 6.

Algorithm 6  Alternative Termination Condition for T
10: if there is no path from x to u in T then

11:  return f

12: end if

Surprisingly, the new test takes no additional time, since he path
from x to u has to be identi ed in Line 13 anyway. Furthermore,
the T -related Lines 6 and 8 can now be done irD(1) instead of
O(log N). This runtime reduction makes this method attractive for
shape matching as we will see in Section 4.5.2. The followinpeorem
proves the correctness and e ciency of the proposed method:

Theorem 7. The proposed method solves the Maximum Flow prob-
lem in O(N logN).

Proof. Our approach substitutes Lines 10{12 of Algorithm 5 with
Algorithm 6. As long as f ; is not a descendant of ,, both approaches
do not di er from one another. This is due to the fact that Line 13
of Algorithm 5 implies the existence of a path fromx to u in T.
Therefore, let us now assume thatf 1 is in fact a descendant off ,.
Then, there exists a path fromf, to f, in the dual tree T . In Line 8
the dual edge €,;f1) is inserted into T and this data structure
possesses now a counter clockwise circle which encloses Wegtex u
(cf. Figure 4.15). Sincee was an edge that leftf ,, the two vertices
x and y are now outside of the just constructed circle. Therefore,
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Figure 4.16: Runtimes of Shape Matching. The runtime on
the y-axis is measured in seconds and depends on the amount of
shape points of each shape. The proposed method outperforntise
existing method of Boykov and Kolmogorov and is also faster than
Dynamic Programming. The speed-up factor increases with arn-
creasing shape resolution.

Line 10 of Algorithm 6 cannot nd a path from x to u and the
proposed method terminates returning the same ow as Algorihm 5.

Finally, we will prove that the extension (Algorithm 6) of th e Al-
gorithm 5 does not increase the runtime. The Dynamic Tree [8D
handles Line 13 as follows. Starting fromx, it attaches Dynamic
Paths until either u or the root t of T is found. If the sink t is found,
we know that there is no path from x to u. Otherwise, a path from
X to u was explicitly found and can be processed in Line 13. In both
cases, the test of Line 10 in Algorithm 6 is natural extensionof Line
13 and does not consume any additional computation time. Heoe,
the proposed method is always faster than that presented ing]. O

4.5.2 E cient Shape Matching via Planar Graph Cuts

As we have seen in Section 4.5, the shape matching problem cére
formulated as nding the minimum cut through the planar grap h
network Z . Because of the planarity ofZ , we can apply the pre-
sented graph cut method of Section 4.5.1. The size of the grdp
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is O(N?) and the proposed method runs therefore inO(N2logN ).
In Figure 4.16, the runtime for two di erent examples are given.
As we can see, the presented implementation outperforms thether
methods and provides a speed-up factor of 2{4 with respect tahe
the original work of Borradaile. Interestingly, the graph cut ap-
proaches are still faster at the presence of similar shapeshis fact
was already observed in Section 4.5 for the method of Boykovral
Kolmogorov. Nonetheless the method is slower than the e cient
DTW-based method presented in Section 4.4.1. The advantagef
this method lies in its formulation, namely that the shape matching
problem can be cast as a graph cut problem and can be solved e -
ciently without iterating over possible initial matches. H opefully, in
the future there will be more e cient methods for graph cuts such
that a graph cut based shape matching is competitive with DTW-
based methods.

4.6 Shape Clustering

In this section, we will study whether the distance function (4.4)
emulates human notion for object similarity. In order to demonstrate
this, we conduct a clustering test on a given database of cowurs

Dj = De(fi;fy); 80 =1,

Afterwards, we test whether shapes of small pointwise distaces look
alike. In order to do this, we used two di erent annotated databases,
i.e. databases that also provide information which shapes twould
be similar to one another. In Section 4.6.1, we used the curvare
feature of Section 4.2.1 and applied it to a subset of the LEMS
database [87]. In Section 4.6.2, we applied the Inner Shapedd-
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Figure 4.17: Clustering. On the left hand side, the pairwise
dissimilarity of six given shapes according to dist(; ) are color-coded.
On the right hand side, 40 shapes are projected into the Euctlean
plane based on their pairwise distance. In general, this prigction
will not preserve pairwise distances since dist( ) is not a metric.
But even this approximation indicates that the distance function
incorporates the human notion of shape similarity.

text [60] to the MPEG7 shape databasé. For both databases we
obtained promising results.

4.6.1 LEMS Database

The LEMS [87] database that we want to use here consists of 99ifd
ferent contours. To cluster this database is considered to & rather
simple. We use this database just to show that the proposed awa-
ture feature of Section 4.2.1 provides good matching resut From
this database, we selected 40 contours which describe the ahe
classeshand, human, ray and tool.

To visualize the computed result, we would like to plot the distance

2The shape database MPEG7 CE Shape-1 Part B is online available
and can be downloaded at http://www.cis.temple.edu/ ~latecki/TestData/
mpeg7shapeB.tar.gz
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result in the real plane. Since the shape space is not a metri¢here
is no natural projection from the shape space into the real phne.
Hence, we need arR? approximation of the shape space spanned
by the feature loops fi. To this end, we applied the method of
multi-dimensional scaling [54] that optimally preserves te pairwise
distances, i.e. we computed a set of points

X1;:11;Xn 2 R? such that jx;  xjj> Df 8i;]

Figure 4.17 shows these 2D-points with their cluster membeship
color-coded. The clear separation of four clusters assoded with

the four shape classes indicates that the computed pairwisdistances
reproduce the human notion of shape similarity for this data base.
Obviously, it su ces to use the provided distance as a measue of
dissimilarity only. The shape clustering provided by the distance
function coincides exactly with the human classi cation of shapes.
It is in fact possible to separate human shapes and shapes obdals,
rays and hands from one another.

4.6.2 MPEGY Database

A very challenging shape database is the MPEG7-database (cfFig-
ure 4.18). It consists of 70 di erent shape classes which areepre-
sented by 20 di erent shapes each. Some of the retrieving redts are
presented in Figure 4.18.

For the so calledBull's Eye Test, one calculates the 40 closest shapes
to a given shape according to the used distance function. If mong
these shapes, there ark shapes of the same class as the query shape,
the retrieval rate is %. The mean of all 1400 retrieval rates is the
retrieval rate of the database. As we can see in Table 4.1, theetrieval
rate depends on the discretization size. For 500 shape poisitof
every shape, the retrieval rate increases up to almost 76%. d&sides

this important retrieval rate, we are also interested in how good the
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| Shape Points | Bull's Eye Worst Case Optimal Classes|

100 67.07% 15.5 % 13
200 73.35% 245 % 14
300 75.04% 25.7 % 15
400 75.71% 25.0 % 15
500 75.97% 26.7 % 16
Table 4.1: MPEGY7 retrieval rate. Some retrieval rates for the

MPEG7 shape database are provided. The results are given whit
respect to the used discretization size (¥ row). Besides the retrieval
rate of the Bull's Eye Test (2" row), the average retrieval rate of
the worst performing class (3¢ row) and the numbers of optimal
performing classes (#) is given.

retrieval for the most challenging class works. For 100 sha@ points
the worst average retrieval rate within one class is 15% whereas
this values increases to 2%6% for a ne discretization size of 500
shape points. Also the amount of classes that provide for a @b
retrieval rate with respect to the Bull's Eye test increases from 13
to 16 classes. Overall, we see that increasing the discretiion size
improves the performance of a shape matching in general. Fothe
Bull's Eye Test, almost 2 million pairwise shape distances have to
be computed. Hence, e cient shape matching methods like theone
presented in this section are necessary to obtain good re&val rates.
To perform the Bull's Eye Test on a standard PC with 500 shape
points, this method took about 84 hours which is considerah} faster
than a purely DTW based method.
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Figure 4.18: MPEG7 retrieval samples. While for shape

classes that are easily confused, retrieval rates can dropéetow 50%
(shape classLizard), the average retrieval rate is above 75%. The
proposed graph cut method allows to substantially accelerge the

required shape distance computation.
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Chapter 5

Conclusion

5.1 Summary

In this work we presented certain e cient methods to solve classi-
cal problems of Shape Analysis. In order to do so, we preserde
three di erent de nitions of shape In Chapter 2, we introduced the
concept of stochastic shapes that assign to every pixel of thimage
domain R? the probability that this pixel is part of the pre-
sented object. As a consequence, this shape model is a regibased
model. In the following chapters, we focused on contour-basd shape
models.

In Chapter 3, we introduced group operations under which a shpe
should be invariant. A shape was then de ned as the set of allmooth
curves (parameterized via immersions) divided by these gnap opera-
tions. Here we di erentiated between two di erent group operations.
The rst group operated as a reparameterization group and the other
group modeled rigid body transformation in the image domain Di-
viding both groups out of the set of smooth curves, we receiwthe
set of shapes. This very technical approach towards the compt of
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shapes has the advantage that every shape can be representeid a
function :[0;2 ]! R and all these functions form an orbifold on
which we can compute a geodesic. Nonetheless, this model @ils
only curves that are parameterized by arc-length. This restiction

was corrected with the shape concept that we used for shape -

ing.

In Chapter 4 the problem of abstracting from a contour was soved
by using a certain feature space that describes a contour in avay
that this description is invariant with respect to rigid bod y trans-
formation. Instead of abstracting from the whole set of conburs
c:St! C, the abstraction happens at every point of the contour.
Every point c¢(s) is described with respect to its neighboring points
such that this local descriptor does not change if a rigid bog trans-
formation is applied to the whole curve. We called these shags
feature loops

For all these di erent concepts of shape, we presented methis to
solve classical Computer Vision problems. The focus of thigiork was
on the e ciency of these methods and in certain cases we couldlso
prove that the presented methods always provide a global opmal
solution with respect to certain energy functionals.

Shape Acquisition

The problem of acquiring a shape from an image was solved via a
functional that combines classical image segmentation fuctionals
with shape prior models. As purely image segmentation fundonals,
Mumford-Shah like functionals and Geodesic Active Contour like
functionals are possible. We also presented three very clagal shape
priors that can be used in order to obtain a functional that is convex
with respect to the used stochastic shape model. This shape odel is
as far as we know one of the rst convex shape models every desied
for shape prior driven image segmentation.
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The advantage of the presented method over other methods Igin
the fact that we can quickly nd the global optimum of the used
functional with respect to possible deformations. This is ssible
because the considered functional is a convex functional ev the
convex domain of possible shapes.

Secondly, we could bene t from the fact that the considered aergy
functional is Lipschitz continuous with respect to rigid body trans-
formations. Thus, a Lipschitz optimization technique could be used
in order to globally optimize the given functional also over possible
rigid body transformations. In general, a Lipschitz optimization is
slower than gradient descent methods. Thus, it makes sensetput
much e ort into convexifying the shape model, because aftewards
only an optimizing over a relatively slow space has to be coridered,
namely the 3-dimensional space of rigid body transformatias.

Knowing that we always nd the global optimum of the specied

energy functional helped us to detect occlusions by simply ansider-
ing the data term of the involved image segmentation negledhg the
part of the energy functional that controls the shape prior.

Concluding, we were able to globally optimize a quite genedavari-
ational approach for image acquisition which is governed byshape
prior and can reliably detect occlusions.

Shape Morphing

In order to solve the problem of shape morphing, we presentec
completely new method of nding a geodesic on an arbitrary sib-
manifold. This quite general approach rejects the commonlyused
shooting method and proposes instead apath-shortening method.
This method applies a gradient descent method on an energy fic-
tional. Thus, it is not necessary to exactly solve either apartial
di erential equation or an ordinary di erential equation . Instead we
just shorten a given path until a geodesic is found.
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One important advantage of the path-shortening method is its e -

ciency. We showed that it is faster by a factor of 1000 dependig on
the used resolution. This e ciency boost is in fact not the only ad-
vantage of the proposed method. We also showed that not onlyhe
formulation of the method but also the computed distances onthe
considered shape space is symmetric. Thus, it makes sensedom-
pute the induced shape metric with this method in order to obtain

a symmetric distance function.

Shape Matching

For the problem of shape matching we proposed two dierent
approaches which both resulted in a worst-case complexity fo
O(N?log(N)) if both shapes are given asN discrete, ordered points.
This is an important contribution since a lot of researchersof the
Computer Vision community still use methods that have a worg-
case complexity ofO(N ®). The rst approach that we presented was
based on a DTW graph and the problem that had to be solved was
the shortest path problem. In fact, not only one but N dierent
paths in a grid of size O(N?) had to be computed. The presented
method is an extension on the method of Maes who proposed to bu
sequently subdivide the set of initial match-points and the involved
graph. Our method has the advantage that it performs not only
a subdivision of the graph, but it also cuts o certain areas d the
graph and thus, improves the run-time dramatically. As a realt, a
shape matching for two shapes that are discretized each by = 1000
shape-points could be computed in about 400 milliseconds. ¥also
demonstrated that the proposed method does not only providethe
best worst-case complexity with respect to all previously poposed
methods. It is also in practice much faster than probabilisically
motivated methods like the popular Branch-and-Bound methad.

The second approach that we proposed addresses the probleni o
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shape matching as a graph cut problem. We could show that this
formulation is equivalent to the shortest path problem in the DTW

graph. But instead of computing multiple shortest paths, we have

only to consider one singlegraph cut. Thus, the prior separation be-

tween initial point-match and the actual matching computat ion does
not exist any more for the graph cut framework that we proposel.

This is an important improvement in the area of shape matchirg.

Nonetheless, this does not mean that shape matching can rdglbe

computed more e ciently than the cubic run-time based DTW ba sed
shape matching.

In order to improve the runtime of the graph cut problem, we pro-

posed a graph cut method that exploits the planarity of the involved

graph. The presented method is an extension of a recent workfo
Borradaile and Klein. While the original work used two quite so-

phisticated data structures in order to reduce the run-time for any

planar graph, we were able to drop one of these data structure and

obtained a more e cient method in the process. As a result, ako

the graph cut formulation computes the shape matching in subcubic

runtime, namely in O(N 2log(N)).

Shape Classi cation

We showed the result of two di erent shape classi cation methods,
namely the method of shape clustering and the method of shapee-
trieval in the form of the Bull's Eye Test for the challenging MPEG7
shape database. We showed that the retrieval rate depends ghly
on the resolution of the shape points. Thus, it is very important to
improve the e ciency of shape matching methods. Instead of pst
performing shape matching for 100 shape points, we could copute
the retrieval rate for up to 500 shape points in justi able ti me. With
a standard PC, the two million comparison of the MPEG7 database
could be computed within less than four days.
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5.2 FRuture Work

Shape Acquisition

In this work we showed how the quite simple shape metric for
stochastic shapes, namely the region-basetd? distance, can be ef-
ciently used for shape acquisition. In general, this distance is not
descriptive enough in order to emulate human notion of objetrecog-
nition. An important extension of the presented shape prior driven
shape acquisition would be the incorporation of more sophitcated
shape dissimilarity measure into shape acquisition. Two ofsuch
measures were presented which were either induced by the grtem
of shape morphing or the problem of shape matching. The main
challenge of such an approach lies in the fact, that robust sape
acquisition in normally de ned as a region based energy funional
while robust shape distance functions are usually de ned asn edge
based energy functional. To combine these two approaches igery
challenging and should be addressed in the future.

Shape Morphing

One important drawback of the presented shape morphing liesn the
fact that arc-length represented shapes were used. We belie that
the good retrieval results that we obtained with shape matching lies
in the exibility of allowing di erent parameterization of the shapes.
Note that a matching mapping m : St | S' between two shapes
reparametrizes the second shape in order to nd a good match ith
respect to the rst shape. Therefore we think that allowing di erent
parameterizations for one shape should improve the resultae obtain
with shape morphing.
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Shape Matching

We presented two di erent methods to compute a shape matchiig be-
tween two shapes represented as loops in a preselected feaspace.
Both methods provided for a very low worst-case run-time conplex-

ity. Thus, also shapes which are given at a quite high resoluon could

be matched in a justi able time. Future work should be focused on

exploiting the fact that shapes given at a ne discretization can be
matched. One important task would be the improving of features
for these nely represented shapes. Hence, it would make sega to
apply a more sophisticated measure on involved histogramske the

two presented shape contexts. Besides this very classicapproach

of shape matching, future work should also be focused on a mer
general form of shape matching, namely partial shape matcimg. In

practice, we often have to deal with occlusion. Future work $ould

not only focus on detecting this occlusion like we did in Chaper 2,

but also detecting partial occlusion should be addressed iruture

work. A major challenge is to automatically divide a shape irto its

parts and to perform a shape matching of these parts. To proude a
general framework that solves this problem automatically $iould be

addressed in the future.

Shape Clustering

While clustering with respect to distance driven methods wak quite
well for some shapes, it may fail for other shapes. This is esp
cially then the case if the involved distance function does ot handle
all presented shapes correctly. As a result, outliers with espect
to the involved distance function should be handled more appopri-
ately. Thus not only distances but also stochastic tools like aver-
aging shapes or the computation of a shape covariances shdube
addressed in the future.
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