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Abstract

High-order (non-linear) functionals have become
very popular in segmentation, stereo and other com-
puter vision problems. Level sets is a well estab-
lished general gradient descent framework, which is di-
rectly applicable to optimization of such functionals and
widely used in practice. Recently, another general op-
timization approach based on trust region methodology
was proposed for regional non-linear functionals [13].
Our goal is a comprehensive experimental comparison
of these two frameworks in regard to practical effi-
ciency, robustness to parameters, and optimality. We
experiment on a wide range of problems with non-linear
constraints on segment volume, appearance and shape.

1. Introduction

We study a general class of complex non-linear
segmentation energies with high-order regional terms.
Such energies are often desirable in the computer vi-
sion tasks of image segmentation, co-segmentation and
stereo [15, 12, 22, 3, 2, 16, 14, 13] and are particularly
useful when there is a prior knowledge about the ap-
pearance or the shape of an object being segmented.

We focus on energies of the following form:

min
S∈Ω

E(S) = R(S) + λL(S), (1)

where S is a binary segmentation, L(S) is a standard
length-based smoothness term, and R(S) is a (gener-
ally) non-linear regional functional discussed below.

Let I : Ω→ Rm be an image defined in Ω ⊂ Rn. The
most basic type of regional terms used in segmentation
is a linear functional U(S), which can be represented
via an arbitrary scalar function f : Ω→ R

U(S) =

∫
S

f dx =

∫
Ω

f · 1S dx =: 〈f, S〉 . (2)
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Figure 1. Gradient descent (level sets) and trust region.

Usually, f corresponds to an appearance model based
on image intensities/colors I, e.g., f(x) could be a log-
likelihood ratio for intensity I(x) given particular ob-
ject and background intensity distributions. The in-
tegral in (2) can be seen as a dot product between
scalar function f and 1S , which denotes the character-
istic function of set S. We use notation 〈f, S〉 to refer
to such linear functionals.

More general non-linear regional functional R(S)
can be described as follows. Assume k scalar functions
f1, . . . , fk : Ω → R, each defining a linear functional
〈fi, S〉 of type (2), and one differentiable non-linear
function F (v1, . . . , vk) : Rk → R that combines them,

R(S) = F (〈f1, S〉 , . . . , 〈fk, S〉) . (3)

Such general regional terms could enforce non-linear
constraints on volume or higher-order shape moments
of segment S. They could also penalize L2 or other
distance metrics between the distribution (or non-
normalized bin counts) of intensities/colors inside seg-
ment S and some given target. For example, S could be
softly constrained to specific volume V0 via quadratic
functional

R(S) = (〈1, S〉 − V0)2

using f1(x) = 1 and F (v) = (v − V0)2, while the
Kullback-Leibler (KL) divergence between the inten-
sity distribution in S and a fixed target distribution
q = (q1, . . . , qk) could be written as

R(S) =

k∑
i

〈fi, S〉
〈1, S〉

log

(
〈fi, S〉
〈1, S〉 · qi

)
.
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Here scalar function fi(x) is an indicator for pixels with
intensity i (in bin i). More examples of non-linear re-
gional terms R(S) are discussed in Section 3.

In general, optimization of non-linear regional terms
is NP-hard and cannot be addressed by standard global
optimization methods. Some earlier papers developed
specialized techniques for particular forms of non-linear
regional functionals. For example, the algorithm in [2]
was developed for minimizing the Bhattacharyya dis-
tance between distributions and a dual-decomposition
approach in [24] applies to convex piece-wise linear
regional functionals (3). These methods are outside
the scope of our paper since we focus on more general
techniques. Combinatorial techniques [15, 22] apply to
general non-linear regional functionals, and they can
make large moves by globally minimizing some approx-
imating energy. However, as pointed out in [14], these
methods are known to converge to solutions that are
not even a local minimum of energy (1). Level sets
are a well established in the litterature as a gradient
descent framework that can address arbitrary differen-
tiable functionals [19], and therefore, are widely used
for high-order terms [1, 11, 4, 18, 12].

This paper compares two known optimization meth-
ods applicable to energy (1) with any high-order re-
gional term (3): trust region and level sets. To address
non-linear term R(S), both methods use its first-order
functional derivative

∂R

∂S
=

k∑
i=1

∂F

∂vi
(〈f1, S〉 , . . . , 〈fk, S〉) · fi (4)

either when computing gradient flow for (1) in level
sets or when approximating energy (1) in trust region.
However, despite using the same first derivative ∂R

∂S ,
the level sets and trust region are fairly different ap-
proaches to optimize (1).

The structure of the paper is as follows. Sections 2.1-
2.2 review the two general approaches that we compare:
gradient descent implemented with level sets and trust
region implemented with graph cuts. While the general
trust region framework [13] can be based on a num-
ber of underlying global optimization techniques, we
specifically choose a graph cut implementation (ver-
sus continuous convex relaxation approach), since it is
more appropriate for our CPU-based evaluations. Our
experimental results and comparisons are reported in
Section 3 and Section 4 presents the conclusions.

2. Overview of Algorithms

Below we provide general background information
on level sets and trust region methods, see Sections

2.1–2.2. High-level conceptual comparison of the two
frameworks is provided in Section 2.3.

2.1. Standard Level Sets

In the level set framework, minimization of energy E
is carried out by computing a partial differential equa-
tion (PDE), which governs the evolution of the bound-
ary of S. To this end, we derive the Euler-Lagrange
equation by embedding segment S in a one-parameter
family S(t), t ∈ R+, and solving a PDE of the general
form:

∂S

∂t
= −∂E(S)

∂S
= −∂R(S)

∂S
− ∂L(S)

∂S
(5)

where t is an artificial time step parameterizing the
descent direction. The basic idea is to describe segment
S implicitly via an embedding function φ : Ω→ R:

S = {x ∈ Ω|φ(x) ≤ 0}
Ω \ S = {x ∈ Ω|φ(x) > 0}, (6)

and evolve φ instead of S. With the above represen-
tation, the terms that appear in energy (1) can be ex-
pressed as functions of φ as follows [9, 19]:

L(S) =

∫
Ω

‖∇H(φ)‖dx =

∫
Ω

δ(φ)‖∇φ‖dx

〈fi, S〉 =

∫
Ω

H(φ)fidx. (7)

Here, δ and H denote the Dirac function and Heav-
iside function, respectively. Therefore, the evolution
equation in (5) can be computed directly by applying
the Euler-Lagrange descent equation with respect to φ.
This gives the following gradient flow:

∂φ

∂t
=

[
−∂R(S)

∂S
+ λκ

]
δ(φ) (8)

with κ := div
(
∇φ
‖∇φ‖

)
denoting the curvature of φ’s

level lines. The first term in (8) is a regional flow min-
imizing R, and the second is a standard curvature flow
minimizing the length of the segment’s boundary.

In standard level set implementations, it is numer-
ically mandatory to keep the evolving φ close to a
distance function [17, 20]. This can be done by re-
initialization procedures [20], which were intensively
used in classical level set methods [8]. Such proce-
dures, however, rely on several ad hoc choices and may
result in undesirable side effects [17]. In our implemen-
tation, we use an efficient and well-known alternative
[17], which adds an internal energy term that penalizes
the deviation of φ from a distance function:

µ

2

∫
Ω

(1− ‖∇φ‖)2
dx. (9)



In comparison to re-initialization procedures, the im-
plementation in [17] allows larger time steps (and there-
fore faster curve evolution). Furthermore, it can be
implemented via simple finite difference schemes, un-
like traditional level set implementations which require
complex upwind schemes [23]. With the distance-
function penalty, the gradient flow in (8) becomes:

∂φ

∂t
= µ [∆φ− κ] +

[
−∂R(S)

∂S
+ λκ

]
δ(φ) (10)

For all the experiments in this paper, we implemented
the flow in (10) using the numerical prescriptions in
[17]. For each point p of the discrete grid, we update
the level set function as

φj+1(p) = φj(p) + ∆t ·A(φj(p)), (11)

where ∆t is the discrete time step and j is the it-
eration number. A(φj(p)) is a numerical approxima-
tion of the right-hand side of (10), where the spa-
tial derivatives of φ are approximated with central
differences and the temporal derivative with forward
differences. The Dirac function is approximated by
δε(t) = 1

2ε [1 + cos(πtε )] for |t| ≤ ε and 0 elsewhere.
We use ε = 1.5 and µ = 0.05.

In the context of level set and PDE methods, it is
known that the choice of time steps should follow strict
numerical conditions to ensure stability of front prop-
agation, e.g., the standard Courant-Friedrichs-Lewy
(CFL) conditions [10]. These conditions require that
∆t should be smaller than a certain value τ that de-
pends on the choice of discretization. The level set
literature generally uses fixed time steps. For instance,
classical upwind schemes [23] generally require a small
∆t for stability, whereas the scheme in [17] allows rela-
tively larger time steps. The optimum time step is not
known a priori and finding a good ∆t < τ via an adap-
tive search such as back-tracking [5] seems attractive.
However, to apply a back-tracking scheme, we would
have to evaluate the energy at each step. In the case of
level sets, this requires a discrete approximation of the
original continuous energy. We observed in our experi-
ments that the gradient of such discrete approximation
of the energy does not coincide with the gradient ob-
tained in the numerical updates in (11). Therefore,
with a back-tracking scheme, level sets get stuck very
quickly in a local minimum of the discrete approxima-
tion of the energy (See the adaptive level set example
in Fig. 2). We believe that this is the main reason why,
to the best of our knowledge, back-tracking approaches
are generally avoided in the level-set literature. There-
fore, in the following level-set experiments, we use a
standard scheme based on fixed time step ∆t during

each curve evolution, and report the performance at
convergence for several values ∆t ∈ {1 . . . 103}.

2.2. Trust Region Framework

Trust region methods are a class of iterative opti-
mization algorithms. In each iteration, an approxi-
mate model of the optimization problem is constructed
near the current solution. The model is only “trusted”
within a small region around the current solution called
“trust region”, since in general, approximations fit the
original non-linear function only locally. The approxi-
mate model is then globally optimized within the trust
region to obtain a candidate iterate solution. This step
is often called trust region sub-problem. The size of the
trust region is adjusted in each iteration based on the
quality of the current approximation. Variants of trust
region approach differ in the kind of approximate model
used, optimizer for the trust region sub-problem step
and a protocol to adjust the next trust region size. For
a detailed review of trust region methods see [25].

Below we outline a general version of a trust region
algorithm in the context of image segmentation. The
goal is to minimize E(S) in Eq. (1). Given solution Sj
and distance dj , the energy E is approximated using

Ẽ(S) = U0(S) + L(S), (12)

where U0(S) is the first order Taylor approximation
of the non-linear term R(S) near Sj . The trust region

sub-problem is then solved by minimizing Ẽ within the
region given by dj . Namely,

S∗ = argmin
||S−Sj ||<d

Ẽ(S). (13)

Once a candidate solution S∗ is obtained, the quality of
the approximation is measured using the ratio between
the actual and predicted reduction in energy. The trust
region is then adjusted accordingly.

For the purpose of our CPU-based evaluations we
specifically selected the Fast Trust Region (FTR) im-
plementation [13] which includes the following compo-
nents for the trust region framework. The non-linear
term R(S) is approximated by the first order Taylor ap-
proximation U0(S) in (12) using first-order functional
derivative (4). The trust region sub-problem in (13)
is formulated as unconstrained Lagrangian optimiza-
tion, which is globally optimized using one graph-cut
(we use a floating point precision in the standard code
for graph-cuts [7]). Note that, in this case, the length
term L(S) is approximated using Cauchy-Crofton for-
mula as in [6]. More details about FTR can be found
in [13].
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Figure 2. Volume constraint with boundary length regularization. We set the weights to λLength = 1, λV olume = 10−4.

2.3. Conceptual Comparison

Some high-level conceptual differences between the
level sets and trust region optimization frameworks are
summarized in Figure 1. Standard level sets methods
use fixed ∆t to make steps −∆t · ∂E∂S in the gradient
descent direction. Trust region algorithm [13] moves to
solution S∗ minimizing approximating functional Ẽ(S)
within a circle of given size d. The trust region size is
adaptively changed from iteration to iteration based
on the observed approximation quality. The blue line
illustrates the spectrum of trust region moves for all
values of d. Solution S̃ is the global minimum of ap-
proximation Ẽ(S). For example, if Ẽ(S) is a 2nd-order
Taylor approximation of E(S) at point S0 then S̃ would
correspond to a Newton’s step.

3. Experimental Comparison

In this section, we compare trust region and level
sets frameworks in terms of practical efficiency, ro-
bustness and optimality. We selected several exam-
ples of segmentation energies with non-linear regional
constraints. These include: 1) quadratic volume con-
straint, 2) shape prior in the form of L2 distance be-
tween the target and the observed shape moments and
3) appearance prior in the form of either L2 distance,
Kullback-Leibler divergence or Bhattacharyya distance
between the target and the observed color distribu-
tions.

In all the experiments below, we optimize energy of
a general form E(S) = R(S) + L(S). To compare op-
timization quality, we will plot energy values for the

results of both level sets and trust region. Note that
the Fast Trust Region (FTR) implementation uses a
discrete formulation based on graph-cuts and level sets
are a continuous framework. Thus, the direct com-
parison of their corresponding energy values should be
done carefully. While numerical evaluation of the re-
gional term R(S) is equivalent in both methods, they
use completely different numerical approaches to mea-
suring length L(S). In particular, level sets use the
approximation of length given in (7), while the graph
cut variant of trust region relies on integral geometry
and Cauchy-Crofton formula popularized by [6].

Since the energies are not comparable by its ac-
tual number, we study instead the robustness of each
method independently and compare the resulting seg-
mentation with one another. Note that level sets have
much smaller oscillation for small time steps, which
supports the theory of the CFL-conditions.

In each application below we examine the robustness
of both trust region and level sets methods by varying
the running parameters. In the trust region method
we vary the multiplier α used to change the size of
the trust region from one iteration to another. For the
rest of the parameters we follow the recommendations
of [13]. In our implementation of level sets we vary the
time-step size ∆t, but keep the parameters ε = 1.5 and
µ = 0.05 fixed for all the experiments.

The top-left plots in figures 2-6 report energy E(S)
as a function of the CPU time. At the end of each itera-
tion, both level sets and trust region require energy up-
dates, which could be computationally expensive. For
example, appearance-based regional functionals require
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Figure 3. Shape prior constraint with length regularization and log-likelihood models. Target shape moments and appear-
ance models are computed from the provided ellipse. We used 100 intensity bins, moments up to order l = 2, λLength = 10,
λShape = 0.01 and λApp = 1. The continuous energy is plotted starting from 4th iteration to reduce the range of the y-axis.

re-evaluation of color histograms/distributions at each
iteration. This is a time consuming step. Therefore,
for completeness of our comparison, we report in the
top-middle plots of each figure energy E(S) versus the
number of energy evaluations (number of updates) re-
quired during the optimization.

3.1. Volume Constraint

First, we perform image segmentation with a volume
constraint with respect to a target volume V0, namely,

R(S) = (〈1, S〉 − V0)2.

We choose to optimize this energy on a synthetic
image without appearance term since the solution to
this problem is known to be a circle. Figure 2 shows
that both FTR and level sets converge to good solu-
tions (nearly circle), with FTR being 25 times faster,
requiring 150 times less energy updates and exhibiting
more robustness to the parameters.

3.2. Shape Prior with Geometric Shape Moments

Next, we perform image segmentation with a shape
prior constraint in the form of L2 distance between
the geometric shape moments of the segment and a
target. Our energy is defined as E(S) = λShapeR(S) +
λLengthL(S)+λAppD(S), whereD(S) is a standard log-
likelihood unary term based on intensity histograms.
In this case, R(S) is given by

R(S) =
∑
p+q≤l

(〈xpyq, S〉 −mpq)
2,

with mpq denoting the target geometric moment of or-
der l = p+ q. Figure 3 shows an example of liver seg-
mentation with the above shape prior constraint. The
target shape moments as well as the foreground and
background appearance models are computed from the
user provided input ellipse as in [16, 13]. We used mo-
ments of up to order l = 2 (including the center of mass
and shape covariance but excluding the volume). Both
trust region and level sets obtain visually pleasing so-
lutions. The trust region method is two orders of mag-
nitude faster and requires two orders of magnitude less
energy updates (top-left and top-middle plots). Since
the level sets method was forced to stop after 10000
iterations, we show the last solution available for each
value of parameter ∆t . The actual convergence for
this method would have taken more iterations. In this
example, the oscillations of the energy are especially
pronounced (top-right plot).

3.3. Appearance Prior

In the experiments below, we apply both methods
to optimize segmentation energies where the goal is
to match a given target appearance distribution using
either the L2 distance between the observed and target
color bin counts, or the Kullback-Leibler divergence
and Bhattacharyya distance between the observed and
target color distributions. Here, our energy is defined
as E(S) = λAppR(S) + λLengthL(S). We assume fi
is an indicator function of pixels belonging to bin i
and qi is the target count (or probability) for bin i.
The target appearance distributions for the object and
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Figure 4. L2 norm between the observed and target color bin counts with length regularization. We used 100 bins per
channel, λApp = 1 and λLength = 1.

the background were obtained from the ground truth
segments. We used 100 bins per color channel. The
images in the experiments below are taken from [21].

L2 distance constraint on bin counts: Figure 4
shows results of segmentation with L2 distance con-
straint between the observed and target bin counts reg-
ularized by length. The regional term in this case is

R(S) =

√√√√ k∑
i=1

(〈fi, S〉 − qi)2.

Since the level sets method was forced to stop after
15000 iterations for values of ∆t = 1, 5, we show the
last solution available. Full convergence would have
taken more iterations. For higher values of ∆t, we
show results at convergence. We observe two orders
of magnitude difference between the trust region and
level sets method in terms of the speed and the number
of energy updates required.

Kullback-Leibler divergence: Figure 5 shows re-
sults of segmentation with KL divergence constraint
between the observed and target color distributions.

The regional term in this case is given by

R(S) =

k∑
i=1

〈fi, S〉
〈1, S〉

log

(
〈fi, S〉
〈1, S〉 qi

)
.

The level sets method converged for times steps ∆t =
50 and 1000 , but was forced to stop for other values
of the parameter after 10000 iterations. We show the
last solution available. Full convergence would have
required more iterations. The trust region method ob-
tains solutions that are closer to the ground truth, runs
two order of magnitude faster and requires less energy
updates.

Bhattacharyya divergence: Figure 6 shows re-
sults of segmentation with Bhattacharyya distance con-
straint between the observed and target color distribu-
tions. The regional term in this case is given by

R(S) = − log

(
k∑
i=1

√
〈fi, S〉
〈1, S〉

qi

)
.

Also for this image, since the level sets method had
not (yet) converged after 10000 iterations for any set
of the parameters, we show the last solution available.
Further increasing parameter ∆t would increase the os-
cillations of the energy (see top-right plot).
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Figure 5. KL divergence between the observed and the target color distribution. We used 100 bins per channel, λApp = 100
and λLength = 0.01. Continuous energy is plotted starting from forth iteration to reduce the range of the y-axis.

4. Conclusions

For relatively simple functionals (3), combining a
few linear terms (k is small), such as constraints on
volume and low-order shape moments, the quality of
the results obtained by both methods is comparable
(visually and energy-wise). However, we observe that
the number of energy updates required for level sets
is two orders of magnitude larger than for trust re-
gion. This behavior is consistent with the correspond-
ing CPU running time plots. The segmentation results
on shape moments were fairly robust with respect to
parameters (time step ∆t and multiplier α) for both
methods. The level sets results for volume constraints
varied with the choice of ∆t. In general, larger steps
caused significant oscillations of the energy in level sets
thereby affecting the quality of the result at conver-
gence.

When optimizing appearance-based regional func-
tionals with large number of histogram bins (corre-
sponding to large k), level sets proved to be extremely
slow. Convergence would require more than 104 iter-
ations (longer than 1 hour on our machine). In some
cases, the corresponding results were far from optimal
both visually and energy-wise. This is in contrast to
the results by trust region approach, which consistently
converged to plausible solutions with low energy in less
than a minute or 100 iterations.

We believe that our results will be useful for many
practitioners in computer vision and medical imaging
when selecting an optimization technique.
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