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Abstract

Trust region is a well-known general approach to opti-
mization which offers many advantages over standard gra-
dient descent techniques. In particular, it allows more ac-
curate nonlinear approximation models. In each iteration
this approach computes a global optimum of a suitable ap-
proximation model within a fixed radius around the current
solution, a.k.a. trust region. In general, this approach can
be used only when some efficient constrained optimization
algorithm is available for the selected non-linear (more ac-
curate) approximation model.

In this paper we propose a Fast Trust Region (FTR) ap-
proach for optimization of segmentation energies with non-
linear regional terms, which are known to be challenging
for existing algorithms. These energies include, but are
not limited to, KL divergence and Bhattacharyya distance
between the observed and the target appearance distribu-
tions, volume constraint on segment size, and shape prior
constraint in a form of L2 distance from target shape mo-
ments. Our method is 1-2 orders of magnitude times faster
than the existing state-of-the-art methods while converging
to comparable or better solutions.

1. Introduction
In the recent years there is a general trend in com-

puter vision towards using complex non-linear energies
with higher-order regional terms for the task of image seg-
mentation, co-segmentation and stereo [9, 7, 13, 2, 1, 10, 8].
In image segmentation such energies are particularly useful
when there is a prior knowledge regarding the appearance
model or the shape of an object being segmented.

In this paper we focus on segmentation energies that
have the following form:

min
S∈Ω

E(S) = R(S) +Q(S), (1)

where S is a binary segmentaiton, R(S) is a non-
linear regional function, and Q(S) is a standard length-

based smoothness term, e.g. quadratic submodular pseudo-
boolean or continuous TV-based functional.

One straightforward approach to minimizing such ener-
gies could be based on gradient descent. In the context of
level-set techniques the corresponding linear approximation
model for E(S) combines a first-order Taylor term for R(S)
with the standard curvature-flow term for Q(S). Linear
approximation model may work reasonably well for sim-
ple quadratic regional terms, e.g. area constraint R(S) =
(|S| − V )2 in [2]. However, it is well known that robust
implementation of gradients descent for more complex re-
gional constraints requires tiny time steps yielding slow run-
ning times and sensitivity to initialization [7, 1]. Signifi-
cantly better optimization and speed are often achieved by
methods specifically designed for particular regional con-
straints, e.g. see [1, 14, 15].

In this paper we propose a fast optimization algorithm
for general high-order energies like (1) based on more ac-
curate non-linear approximation models and a general trust
region framework. We still compute a first-order approx-
imation U0(S) for the regional term R(S). However, we
keep the exact quadratic pseudo-boolean (or TV-based) rep-
resentation of Q(S) instead of its linear (curvature flow)
approximation. At each iteration we use non-linear approx-
imation model

Ẽ(S) = U0(S) +Q(S)

similar to those in [9, 13, 8]. Unlike [9, 13] we globally
optimize this approximation model within a trust region
||S − S0||L2 ≤ d, which is a ball of certain radius d around
current solution S0. The most closely related method is
the exact line-search approach in [8]. At each iteration,
they use a parametric max-flow technique to exhaustively
explore solutions for all values of d and find the solution
with the largest decrease of the original energy E(S). We
would like to point out that in general, the number of dis-
tinct solutions on the line in [8] can be exponential and we
demonstrate that such exhaustive search is often too slow in
practice.



Inspired by backtracking line-search techniques [3] and
standard trust-region optimization framework [16] we pro-
pose to minimize the approximation model within a ball of
fixed radius d and adaptively adjust this radius from itera-
tion to iteration. As in [8] we use a Lagrangian formulation
for the trust-region sub-problem. One of our contributions
is a derivation of a simple analytic relationship between ra-
dius d and Lagrange multiplier λ. This allows us to translate
the standard adaptive scheme controlling the trust region ra-
dius d into an efficient adaptive scheme for the Lagrange
multiplier λ. Consequently, we can use this fast scheme
to replace the exhaustive search over λ in [8]. We demon-
strate that our approach is not only faster by several orders
of magnitude, but, surprisingly, also finds solutions as good
as those obtained by the exhaustive Line-Search in [8].

The rest of the paper is structured as follows. Section 1.1
reviews general trust region approach. Section 2 describes
the details of the proposed Fast Trust Region approach. Ex-
perimental results are presented in Section 3 and finally we
conclude in Section 4.

1.1. General Trust Region Approach

Trust region methods are a class of iterative optimiza-
tion algorithms. In each iteration, an approximate model
of the optimization problem is constructed near the current
solution. The model is only “trusted” within a small re-
gion around the current solution called “trust region”. This
is intuitive, since approximations fit the original non-linear
function only locally. The approximate model is then glob-
ally optimized within the trust region to obtain a candidate
iterate solution. This step is often called trust region sub-
problem. The size of the trust region is adjusted in each
iteration based on the quality of the current approximation.
Variants of trust region approach differ in the kind of ap-
proximate model used, optimizer for the trust-region sub-
problem step and a merit function to decide regarding the
acceptance of the candidate solution and adjustment of the
next trust region size. For a detailed review of trust region
methods see [16].

Below we outline a general version of a trust region al-
gorithm in the context of image segmentation (see pseudo-
code in Algorithm 1). The goal is to minimize E(S) in (1).
Given the current solution Sk and distance dk, the energy E
is approximated using

Ẽ(S) = U0(S) +Q(S), (2)

where U0(S) is the first order Taylor approximation of
the non-linear term R(S) near Sk. The trust region sub-
problem is then solved by minimizing Ẽ within the region
given by dk (line 3). Namely,

S∗ = argmin
||S−Sk||<d

Ẽ(S) (3)

Once a candidate solution S∗ is obtained, the quality of
the approximation is measured using the ratio between the
actual and predicted reduction in energy. Based on this ra-
tio, the solution is updated in line 7 and the trust region is
adjusted in line 9. It is common to set the parameter τ1 in
line 7 to zero, meaning that any candidate solution that de-
creases the actual energy gets accepted. The parameter τ2 in
line 9 is usually set to 0.25 [16]. Reduction ratio above this
value corresponds to good approximation model allowing
increase in the trust region size and thus larger step size.

Algorithm 1: GENERAL TRUST REGION APPROACH

1 Repeat
2 //Solve Trust Region Sub-Problem
3 S∗ ←− argminS∈Ω,||S−Sk||≤dk

Ẽ(S) (3)
4 ∆P = Ẽ(Sk)− Ẽ(S∗) //predicted reduction in energy
5 ∆A = E(Sk)− E(S∗) //actual reduction in energy
6 //Update current solution

7 Sk+1 ←−
{

S∗ if ∆A/∆P > τ1
Sk otherwise

8 //Adjust the trust region

9 dk+1 ←−
{

dk · α if ∆A/∆P > τ2
dk/α otherwise

10 Until Convergence

2. Our approach
In the previous section, we discussed the general trust re-

gion approach. The central point of this approach is to solve
a non-linear trust region sub-problem with the distance con-
straint (3). In Section 2.1 we show how this problem can
be solved using unconstrained Lagrangian Formulation and
state its properties. Then, in Section 2.2 we discuss the rela-
tionship between distance constraint d in (3) and Lagrange
multiplier λ. In Section 2.3 we describe in detail our Fast
Trust Region algorithm and in Section 2.4 we discuss its
relation to gradient descent methods.

2.1. Lagrangian Formulation

Similarly to [8] we use the following unconstrained La-
grangian formulation for the trust region sub-problem (3):

Lλ(S) = Ẽ(S) +
λ

2
dist(∂S0, ∂S)

2, (4)

where dist(·, ·) is a non-symmetric distance on the shape
space defined on the segmentation’s boundary as

dist(∂S0, ∂S) :=

[∫
S0

min
s∈S

∥s− s0∥2 ds0
] 1

2

. (5)

This distance can be approximated [6] using the integration
of the signed distance function ϕ0 of S0:

dist(∂S0, ∂S)
2 ≈⟨2 · ϕ0, S⟩ − ⟨2 · ϕ0, S0⟩ . (6)



λ λmax 0 

F(λ) 
Sλ = S0 

F(λ) = E(S0) ̃ 

Figure 1. Each S induces a linear function λ 7→ Lλ(S). Their
lower envelope yields the function F (λ) = minS Lλ(S).

The above approximation is linear and therefore Lλ(S) can
be minimized efficiently for any value of λ using graph-cut
or TV-based methods. Below we state some basic properties
of this Lagrangian formulation.

Property 1: Consider function F : R+ → R defined
via F (λ) := minS Lλ(S). Each S induces a linear function
λ 7→ Lλ(S) and Fλ is their lower envelope. Therefore,
F (λ) is a piece-wise linear concave function of λ with a
finite (possibly exponential) number of break points [11].

Property 2: Let Sλ be the minimizer of Lλ(S) in (4)
and let λmax be the maximal break point of F . Namely,

λmax = sup {λ|Sλ ̸= S0} .

By definition, for any λ > λmax, Sλ = S0 and, therefore,
F (λ) = Ẽ(S0) = const. Since F is concave (Prop.1), F
must also be monotonic non-decreasing function of λ with
maximum at λmax (see Figure 1).

Property 3: For any λ > 0 it holds that

Ẽ(Sλ) ≤ Ẽ(S0). (7)

Assume that there is a λ such that Ẽ(Sλ) > Ẽ(S0). Then,

F (λ) =Lλ(Sλ) = Ẽ(Sλ) +
λ

2
dist(∂Sλ, ∂S0)

2

>Ẽ(S0) = Lλ(S0),

contradicting the optimality of Sλ. More generally,
Property 4: The function λ 7→ Ẽ(Sλ) is monotonic

non-decreasing (see remark 1 in [6]).

2.2. Relationship between λ and d

The standard trust region approach (see Algorithm 1)
adaptively adjusts the distance parameter d. Since we use
the Lagrangian formulation (4) to solve the trust region sub-
problem (3), we do not directly control d. Instead, we con-
trol Lagrange multiplier λ. However, for each Lagrangian
multiplier λ there is a corresponding distance d such that
minimizer Sλ of (4) also solves (3) for that d. We can easily
compute the corresponding value of d = dist(∂S0, ∂Sλ).
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Figure 2. Empirical dependence between λ and d obtained in one
typical iteration in our experiments (left). Using the log-scale in
both λ and d it can be seen that the slope of empirical dependence
is the same as that of 1/d.

Figure 2(left) illustrates empirical dependence between λ
and d obtained in one typical iteration in our experiments.

The relationship between λ and d can also be de-
rived analytically. Consider the Lagrangian in (4) where
dist(∂S0, ∂S) is given by the approximation in (6), i.e.

Lλ(S) ≈ Ẽ(S) + λ ⟨ϕ0, S − S0⟩ . (8)

Let Sλ be the minimizer of (8). Then it must satisfy

0 =∇Ẽ(Sλ) + λϕ0 (9)

0 =
⟨
∇Ẽ(Sλ), Sλ − S0

⟩
+ λ ⟨ϕ0, Sλ − S0⟩ (10)

λ =

⟨
∇Ẽ(Sλ), S0 − Sλ

⟩
d2

≈ Ẽ(S0)− Ẽ(Sλ)

d2
(11)

The last expression is obtained via a Taylor approxima-
tion. Note that the gradient that we used here is taken with
respect to the natural L2 function space of relaxed segmen-
tation. In particular, every segmentation S : Ω → {0, 1} is
also a function of the form S : Ω → R.

Instead of writing Ẽ in a region-based form using the
function S, we can also rewrite it in a contour-based form
ẼC(∂S) = Ẽ(S) using Green’s formula. By applying
again the Taylor approximation, we obtain that

λ ≈

⟨
∇ẼC(∂S0), ∂Sλ − ∂S0

⟩
d2

≤

∥∥∥∇ẼC(∂S0)
∥∥∥dist(∂S0, ∂Sλ)

d2
=

∥∥∥∇ẼC(∂S0)
∥∥∥

d

We therefore can assume a proportionality between λ
and 1/d. This means that when the distance dk is mul-
tiplied by a certain factor α, we instead divide λ by the
same factor α. Figure 2(right) compares the empirical de-
pendence shown on the left plot with the dependence given
by λ = 1/d. Using log-scale for both d and λ, it can be
seen that the slope of empirical dependence is the same as
the slope of 1/d which justifies our heuristic.



2.3. Fast Trust Region (FTR)

In this section we describe our Fast Trust Region (FTR)
algorithm, see Algorithm 2 below. This algorithm follows
from the standard trust region framework, see Algorithm 1,
but uses Lagrangian formulation described in Section 2.1
instead of constrained optimization in 3. The relationship
between Lagrange multiplier λ and distance d established
in Section 2.2 allows us to translate the standard adaptive
scheme for d in Algorithm 1 into an adaptive scheme for λ
in our Algorithm 2. Note that we use parameter τ1 = 0 (see
Algorithm 1) so that any decrease in energy is accepted.

We can show that our algorithm converges: in each itera-
tion the method solves the trust region sub-problem with the
given multiplier λ (line 4). The algorithm either decreases
the energy by accepting the candidate solution (line 18) or
reduces the trust region (line 21). When the trust region is
so small that Sk = Sλ (line 7), one more attempt is made
using λmax (see Property 2). If no reduction in actual en-
ergy is achieved using Sλmax (line 14), we have arrived at
local minimum [6] and the algorithm stops (line 15).

Following recommendations for standard trust region
methods [16], we set parameter τ2 = 0.25 in line 21. Re-
duction ratio ∆A/∆P above τ2 implies good approxima-
tion quality, allowing increase of the trust region.

Algorithm 2: FAST TRUST REGION ALGORITHM

1 k ←− 0, Sk ←− Sinit, λ←− λinit, convergedFlag←− 0
2 repeat
3 //Solve trust region sub-problem
4 Sλ ←− argminS Lλ (4) //minimize with curr step-size
5 ∆P = Ẽ(Sk)− Ẽ(Sλ) //predicted reduction in energy
6 ∆A = E(Sk)− E(Sλ) //actual reduction in energy
7 If ∆P = 0 //(meaning Sλ = Sk and λ > λmax)
8 λ←− λmax //make smallest possible step
9 //Solve trust region sub-problem

10 Sλ ←− argminLλ

11 ∆P = Ẽ(Sk)− Ẽ(Sλ) //predicted reduction
12 ∆A = E(Sk)− E(Sλ) //actual reduction
13 //Update current solution

14 Sk+1 ←−
{

Sλ if ∆A > 0
Sk otherwise

15 convergedFlag←− (Sk+1 = Sk) //local minima
16 Else //(meaning Sλ ̸= Sk and λ ≤ λmax)
17 //Update current solution

18 Sk+1 ←−
{

Sλ if ∆A > 0
Sk otherwise

19 End
20 //Adjust the trust region

21 λ←−
{

λ/α if ∆A/∆P > τ2
λ · α otherwise

22 until convergedFlag

23 we use α = 10, τ2 = 0.25; λmax is defined in Property 2.

2.4. Relationship to Gradient Descent

A trust region approach can be seen as a generalization
of a gradient descent approach. In this section we will re-
visit this relationship in the case of the specific energy that
we use. In particular, we are interested in a relationship be-
tween our approach and a level-set approach. Like in Sec-
tion 2.2 we express the energy Ẽ(S) as a function of seg-
mentation boundary ∂S. We denote this energy by ẼC and
it holds ẼC(∂S) = Ẽ(S). Now let Sλ be the minimizer of

Lλ(S) = ẼC(∂S) +
λ

2
dist(∂S0, ∂S)

2. (12)

According to the definition (5) there is a vector field V on
the boundary ∂S0 such that ∂S0 + V = ∂Sλ. Below we
denote this vector field by ∂Sλ − ∂S0. Note that this no-
tation implies that every parametrization of S0 induces a
parametrization of Sλ. For the minimizer Sλ it holds that

0 =∇ẼC(∂Sλ) + λ(∂Sλ − ∂S0)

∂Sλ =∂S0 − t∇Ẽ(Sλ), (13)

where t = 1/λ is a step size. Note that Equation (13) is
an update step that may arise during gradient descent ap-
proaches using the level-set formulation. There are differ-
ences between our approach and the level-set framework.
First, we minimize (12) globally using graph-cut or TV ap-
proaches, while level-set methods only make small steps.

Another difference is that our trust region approach does
not follow −∇Ẽ(S0) but rather −∇Ẽ(Sλ) instead. We
show that this is nonetheless a direction in which the en-
ergy decreases. By rewriting (13), we obtain

∂S0 = ∂Sλ + t∇Ẽ(Sλ),

which proves that S0 can be seen as a gradient ascent step
starting from Sλ if t = 1/λ is small enough. Obviously Sλ

becomes a gradient descent step for such small t.
In practice, we cannot make infinitesimally small steps

because the minimal step size is given by t = 1/λmax. Ac-
cording to (7), Sλmax is a descent step of the energy, i.e.

Ẽ(Sλmax) ≤ Ẽ(S0).

We use this property in order to simulate a gradient descent
approach. Starting with segmentation S0, at iteration k+1,
we set Sk+1 = Sλmax computed with respect to segmenta-
tion Sk. Since Ẽ(·) decreases, this approach converges.

We show in Section 3 that such a simulated gradient
descent approach is not only much slower than our trust-
region approach, but also less reliable as it is prone to get
stuck in a weaker local minimum.



3. Applications
In this section we apply our method to segmentation of

natural and medical images. We selected several exam-
ples of segmentation energies with non-linear regional con-
straints. These include volume constraint, shape prior in
a form of L2 distance from target shape moments, as well
as Kullback-Leibler divergence and Bhattacharyya distance
between the segment and target appearance distributions.

We compare the performance of our Fast Trust Region
approach with the exact line-search algorithm proposed in
[8] and simulated gradient descent described in Section
2.4, because these are the most related general algorithms
for minimization of non-linear regional segmentation ener-
gies. Our implementation of the above methods is based on
graph-cuts, therefore we compare the energy as a function
of number of graph-cuts performed. We use the floating
point precision in the standard code for graph-cuts [5].

While the running time of simulated gradient descent
could potentially be improved by using level-sets imple-
mentation, it would still be prone to getting stuck in weak
local minimum when optimizing complex energies (see Fig-
ures 6-8). This behavior of simulated gradient descent
method also conforms to the conclusions made in [2, 1] re-
garding gradient descent based on level-sets.

3.1. Volume Constraint

Below, we perform image segmentation with volume
constraint. Namely, E(S) = R(S) +Q(S) where

R(S) =
1

2
(⟨1Ω, S⟩ − V )2,

V is a given target volume and Q(S) is a 16-neighborhood
quadratic length term,

Q(S) = λ
∑
(p,q)

wpq · δ(sp ̸= sq).

We approximate R(S) near S0 using the first order Taylor
approximation U0(S) = ⟨g, S⟩. For our volume constraint,
this results in

g(x, y) ≡ ⟨1Ω, S0⟩ − V.

This is a relatively simple energy and Figure 3(top) shows
that FTR as well as exact line-search [8] and simulated gra-
dient descent converge to good local minimum solutions
(circle), with FTR being significantly faster (bottom).

Figure 4 shows four examples of vertebrae segmenta-
tion with volume constraint. The color coded segmenta-
tions (yellow, green, red, cyan) are performed separately
but shown together due to the lack of space. Since the vol-
ume varies considerably across vertebrae we use a range

Init Line-Search Trust Region Descent” 
“Gradient Fast Exact 

“ “ 

Figure 3. Synthetic example for volume constraint: λSmooth = 1,
λShape = 0.0001. Target volume is the size of initial segmentation.

volume constraint that penalizes deviations from the allow-
able range, namely

R(S) =

 1/2(⟨1Ω, S⟩ − Vmax)
2 if |S| ≥ Vmax

1/2(⟨1Ω, S⟩ − Vmin)
2 if |S| ≤ Vmin

0 otherwise.

In this example, in addition to the volume constraint and
contrast-sensitive quadratic length term we make use of
Boykov-Jolly style log-likelihoods [4] based on color his-
tograms. Namely, E(S) = R(S) + Q(S) + D(S), where
D(S) is a standard log-likelihood unary term. In this case,
Ẽ(S) = U0(S) + Q(S) + D(S). Again, all three meth-
ods (FTR, exact line-search and simulated gradient descent)
converge to good solutions (see Figure 4) with FTR being
significantly faster. The plot shows convergence behavior
for the vertebrae marked in red. The volume constraint
strongly controls the resulting segmentation compared to
the one obtained without the constraint (top-right).

3.2. Shape Prior with Geometric Shape Moments

Below, we perform image segmentation with shape prior
constraint in a form of L2 distance between segment and
target geometric shape moments. Our energy is defined as
E(S) = R(S) + Q(S) + D(S). Here, D(S) is a stan-
dard log-likelihood unary term based on color histograms,
Q(S) is a contrast-sensitive quadratic length term and R(S)
is given by

R(S) =
1

2

∑
p+q≤d

(⟨xpyq, S⟩ −mpq)
2,

with mpq denoting the target geometric moment of order
d = p + q. The first order Taylor approximation of R(S)



Boykov – Jolly
No Volume Constraint

Fast Trust Region

Exact Line-Search

Initializations

“Gradient Descent”

Figure 4. Four examples of vertebrae segmentation with range vol-
ume constraint, color coded (yellow, green, red, cyan). λSmooth =
0.02, λShape = 0.01, λSmooth = 0.1. We used Vmin = 890 and
Vmax = 1410])

near S0 results in U0(S) = ⟨g, S⟩ where

g(x, y) =
∑

p+q≤d

[⟨xpyq, S0⟩ −mpq]x
pyq.

Figure 5 shows an example of liver segmentation with
the above shape prior constraint. The target shape moments
as well as the foreground and background appearance mod-
els are computed from an input ellipse (top-left) provided
by user as in [10]. We used moments of up to order d = 2
(including the center of mass and shape covariance but ex-
cluding the volume). This energy can be optimized quite
well with the exact line-search and the simulated gradient
descent methods, but it is 10 to 100 times faster to do so with
FTR (bottom). Shape prior constraint controls the resulting
segmentation compared to the best segmentation obtained
without shape prior (top-right).

So far we have demonstrated that FTR is a fast opti-
mization method. In the next experiments we show that
as the segmentation energy becomes more complex, FTR
becomes more advantageous since Gradient Descent often
gets stuck in weak local minimum while exact line-search
is too slow.

3.3. Matching Target Appearance

In the experiments below we apply FTR to optimize seg-
mentation energies where the goal is to match a given target

Exact Trust 
Init 

Boykov-Jolly 

Line-Search Region   

Fast 

“Gradient 
Descent” 

“ “ 

Figure 5. Liver segmentation using shape prior constraint in a form
of L2 distance from the target shape moments. As in [10] we
compute geometric shape moments and appearance models for the
user provided input (ellipse). We used moments of up to order 2
excluding volume and log-likelihood appearance models with 100
bins. (λSmooth = 5, λShape = 0.01 and λApp = 1)

appearance distribution using either Kullback-Leibler diver-
gence [8] or Bhattacharrya distance [1, 8] between the seg-
ment and target appearance distributions. The images in the
experiments below are taken from [12]. Again, we approx-
imate R(S) near S0 using the first order Taylor approxima-
tion U0(S) = ⟨g, S⟩ which results in the following scalar
functions:

g(x, y) =

k∑
i=1

[
log

(
⟨fi, S0⟩
⟨1, S0⟩ qi

)
+ 1

]
·

[
fi(x, y)

⟨1, S0⟩
− ⟨fi, S0⟩

⟨1, S0⟩2

]

for the KL divergence and

g(x, y) =

∑k
i=1

√
⟨fi,S0⟩qi
⟨1,S0⟩3

−
√

qi
⟨1,S0⟩⟨fi,S0⟩fi(x, y)

2
∑k

i=1

√
⟨fi,S0⟩qi
⟨1,S0⟩

for the Bhattacharyya distance. Here, fi is an indicator
function of pixels belonging to bin i and qi is the target
probability of bin i. The target appearance distributions
for the object and the background were obtained from the
ground truth segments. We used 100 bins per color chan-
nel.

Figure 6 illustrates the superior performance of FTR
compared to the simulated gradient descent method. As the
energy becomes more complex, either due to addition of the
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Figure 6. Matching target appearance distribution using linear log-
likelihood data term style Boykov-Jolly [4] and 15 bins per color
channel (top row), KL divergence with 15 bins per channel (mid-
dle row) and KL divergence with 100 bins per color channel (bot-
tom row). λSmooth = 0.01, λApp = 80. Target appearance model is
set using the ground truth segmentation.

non-linear regional term (moving from the first row to the
second) or due to the increased number of bins used to fit
appearance distribution (moving from the second row to the
third), the Gradient Descent approach gets stuck in weak lo-
cal minimum while our FTR efficiently converges to good
solutions (see right column for comparing the energy).

Figures 7-8 show additional examples with KL diver-
gence and Bhattacharrya distance respectively, using 100
bins per color channel and regularizing with contrast sensi-
tive quadratic length term Q(S). Note, the simulated gra-
dient descent method is unable to reduce the energy, while
exact line-search is about 100 times slower than the pro-
posed FTR.

Finally, Figures 9-10 show the practical robustness of the
FTR algorithm to the reduction ratio threshold τ2.

4. Conclusions
In this paper we propose a Fast Trust Region (FTR) al-

gorithm for image segmentation. We use the Lagrangian
framework for the trust-region sub-problem and derive a
simple analytic relationship between distance constraint d
and Lagrange multiplier λ. This relationship allows us to
adjust the trust region distance constraint implicitly by con-
trolling the Lagrange multiplier λ. We demonstrate that our
adaptive scheme for λ significantly speeds up (up to a factor
of 100) over the exact line-search [8], while getting compa-
rable solutions in practice. Moreover, we analyze the re-

Init  Line-Search   Trust Region Descent” 
“Gradient Exact Fast 

“ “ 

Figure 7. Matching target appearance distribution using Kullback-
Leibler Divergence and 100 bins per color channel: λSmooth =
0.01, λApp = 100. Target appearance model is set using the
ground truth segmentation.

Exact  Init 

Line-Search 

“Gradient 

Descent” 

Fast 

Trust Region 

“ “ 

Figure 8. Matching target appearance distribution using Bhat-
tacharyya distance and 100 bins per color channel. We used
λSmooth = 1, λApp = 1000. Target appearance model is set us-
ing the ground truth segmentation.

lationship between FTR and classical gradient descent ap-
proaches based on level-sets. In contrast to local linear up-
dates in gradient decent methods, FTR incorporates long-
range, non-linear steps that, in practice, avoid weak local
minima.

We demonstrate that FTR is an efficient and robust opti-
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Figure 9. Robustness to reduction ratio τ2 when matching target
appearance distribution using Kullback-Leibler Divergence and
100 bins per color channel. We used λSmooth = 0.01, λApp = 100.
Target appearance model is set using the ground truth segmenta-
tion using 100 bins per color channel.
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Figure 10. Robustness to reduction ratio τ2 when matching tar-
get appearance distribution using Kullback-Leibler divergence and
100 bins per color channel. We used λSmooth = 0.01, λApp = 100.
Target appearance model is set using the ground truth segmenta-
tion using 100 bins per color channer.

mization method. In the future we plan to explore possible
applications of FTR for optimization of novel complex en-
ergies.
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