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Abstract

Most shape analysis methods use meshes to discretize the
shape and functions on it by piecewise linear functions. Fine
meshes are then necessary to represent smooth shapes and
compute accurate curvatures or Laplace-Beltrami eigen-
functions at large computational costs. We avoid this bottle-
neck by representing smooth shapes as subdivision surfaces
and using the subdivision scheme to parametrize smooth
surface functions with few control parameters.

We propose a model to fit a subdivision surface to input
samples that, unlike previous methods, can be applied to
noisy and partial scans from depth sensors. The task is for-
mulated as an optimization problem with robust data terms
and solved with a sequential quadratic program that outper-
forms the solvers previously used to fit subdivision surfaces
to noisy data. Our experiments show that the compression of
a subdivision representation does not affect the accuracy of
the Laplace-Beltrami operator and allows to compute shape
descriptors, geodesics, and shape matchings at a fraction of
the computational cost of mesh representations.

1. Introduction
Many shape analysis tasks describe shapes as smooth

manifolds and analyze them with respect to their geometry
in terms of normals, curvatures, and descriptors that require
accurate estimates of first- and second-order derivatives over
the shape to compute tangent spaces and Laplace-Beltrami
operators [17,18,27,32]. When the surface is represented as
a mesh or point cloud, these differential operators can only
be approximated at large memory and computational costs.

Once normals and tangent spaces have been computed,
most of the high resolution information is discarded by op-
erating only with the leading eigenfunctions of the Laplace-
Beltrami operator to compute geodesics [6], shape descrip-
tors [1,17,18,27] or shape matches [24] with tractable prob-
lem sizes. This creates a paradox, as shapes are first dis-
cretized with fine meshes or dense pointclouds to estimate
high-dimensional differential operators that are mostly dis-
carded to analyze the shape. However, we only need large

meshes or dense pointclouds to discretize accurate differen-
tial operators, not for shape analysis. We avoid this paradox
by representing a shape with a subdivision surface [23] that
parametrizes the surface with a small set of smooth base
functions. Differentiability is then intrinsic to the shape
representation and does not require large bases to compute
shape descriptors, geodesics, or shape matches.

Subdivision surfaces are not the surface representation
obtained from range measurements or computer vision al-
gorithms. Their impact on computer vision depends on the
availability of robust techniques to fit a subdivison surface
to raw measurements. For this reason, our first contribution
(Section 4) is a robustmethod and code that fits a subdivision
surface to a noisy pointcloud and estimates the geometric op-
erators for shape analysis. Our model can also handle partial
scans by reconstructing surfaces with a boundaries and is ro-
bust to outliers. Whenwefit a subdivision surface to triangu-
lar meshes common in shape analysis [2], our robust model
improves upon least-squares techniques [10,16,21,22] sen-
sitive to erroneous correspondences that ignore boundary
information required to fit partial scans.

Our second contribution is a fast optimization algorithm
(Section 6) that combines a sequential quadratic approxima-
tion with a bespoken initialization that estimates the surface
topology. Initialization impacts the accuracy of the solution
because the problem is not convex. As a result, [4,11,29] re-
sort tomanual or spherical [12] initializations that constraint
the topology and oversmooth the surface to avoid small-scale
minima and prevent self-intersections during optimization.

In our third contribution (Section 3) we demonstrate
the accuracy of shape analysis with subdivision surfaces.
We focus on Laplace-Beltrami operator, wave kernel sig-
natures [1], geodesics [6] and shape matching [24]. Our
experiments show state-of-the-art performance at a fraction
of the memory costs of triangular meshes, see Fig. 1 .

2. RelatedWork: CleanGraphics, Noisy Vision
Graphics techniques fit a subdivision surface by mini-

mizing the sum of squared distances between the subdi-
vision surface and the vertices of a clean mesh [10, 21].
Research has focused into efficient ways of minimizing this
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input pointcloud triangular mesh from [14] 30 geodesic level lines 5 geodesic 5 level lines
501007 points 86246 vertices cos(30πg) cos(5πg)

input pointcloud edge-collapsed mesh [14] 30 geodesic level lines 5 geodesic 5 level lines
501007 points 1500 vertices cos(30πg) cos(5πg)

input pointcloud subdivision surface 30 geodesic level lines 5 geodesic 5 level lines
501007 points 1500 control vertices cos(30πg) cos(5πg)

Figure 1. Teaser: Computation of geodesic g with different surface representations by the Heat method [6] . Column 1: input Kinect
pointcloud. Column 2: representation of the surface with a high-resolution mesh obtained with Poisson reconstruction [14] (row 1), a
low-resolution mesh obtained by quadratic edge collapse [8] of the high-resolution mesh (row 2), and with our subdivision surface (row
3). Columns 3 and 4: level lines of the geodesic visualized as cos($g). Our subdivision surface is comparable to the surface obtained by
Poisson reconstruction and faithfully represent geodesics at low and high resolution with 2% of vertices. Compressing the Poisson mesh
by edge collapse looses small scale details of the surface and its geodesic, as highlighted by high-frequency level lines of the geodesic.

non-convex energy by gradient-descent [33], quasi-Newton
[19, 22, 30], and sequential convex techniques [16, 22]. A
common approach iteratively approximates the squared dis-
tance to the surface and minimizes the resulting convex en-
ergy. Our method adapts this strategy to the robust energies
that fit a surface to noisy data. We outperform these models
in 4 points: 1) A robust energy reduces the effects of outliers
in the input data, errors in the correspondences (between in-
put samples and the surface point closest them), and the
quadratic distance approximation. 2) We use a 2nd-order
approximation to the squared distance function, instead of
the 1st order of [22], to take into account curvature informa-
tion and fit better the small-scale structures. 3) We penalize
deviations of the tangent space to improve the appearance
of sharp creases. 4) We fit surfaces with boundaries.

Computer Vision has focused on energy models to fit
subdivision surfaces to noisy data [4, 11, 12, 29], but has
ignored the impact of outliers and optimization. [11] fits a
subvision surface to range data by solving a least-squares
problem that assumes optimal correspondences. This as-
sumption is removed in [4, 12, 29] by explicitly optimizing
the correspondences. These methods assume the topology

of the surface to be know and initialize it manually with a
correct but coarse mesh [4, 29] or with a sphere [12] that
needs to oversmooths the energy (surface) to prevent self in-
tersections during optimization. The Levenberg-Marquardt
(LM) solvers of these methods estimate jointly the vertices
of the control mesh and the correspondences by increasing
the size of the problem. Without frequent reinitialization,
LM solvers are slow because the correspondence updates
are limited to to adjacent faces of the control mesh. Our
algorithm places no limits on these updates and can jump to
different valleys of the energy landscape.

To our knowledge subdivision surfaces have not been
used in shape analysis before. [3, 9, 13, 31] investigate the
accuracy of mass and stiffness matrices on subdivision but
do not consider shape descriptors, geodesics, or matching.

3. Smooth Shapes
A shape is a smooth (C2), compact, oriented surface

S ⊂ R3 with boundary ∂S. When we discretize a smooth
surface by a mesh M = (V, F ), with vertices V and facets
F , the surface parametrization is only piecewiseC1 because
each facet parametrizes a piece of surface independently.



Subdivision surfaces, on the other hand, use meshes to dis-
cretize the domain of the parametrization, not the surface
itself, and obtain a smooth discretization without explicitly
constraining the parametrization to be smooth across surface
facets. We refer to [23] for an introduction to subdivision.

A subdivision surface represents a smooth surface S by
a coarse control mesh M = M0 and a subdivision scheme.
The subdivision scheme transforms a mesh Mk−1 into a
finermeshMk and obtains a smooth surface as the limit of it-
erating subdivision ad infinitum, that is S = limk→∞ SMk .

The topology of the surface is completely determined
by the topology of the control mesh M0, while its ge-
ometry is characterized by the location of the its vertices
V = (v1...vn). The limit surface S is parametrized by a lin-
ear combination of the limit base functions of the subdivision
scheme Φ1, . . . ,Φn with the control vertices as follows

X(u) =
n∑

i=1

viΦi(u) for u = (û, f) ∈ TM, (1)

where the domain of the parametrization, TM, is the set
of mesh faces f ∈ F 0 with local coordinates û. The limit
base functionsΦ1, . . . ,Φn are compactly supported because
the subdivision rules act locally and correspond to different
spline basis [23]. The equivalence of the limit functions
to spline bases provides fast evaluation techniques [28] for
functions and tangent vectors defined over the surface. This
makes subdivision well-suited for shape analysis.

We adopt the Catmull-Clark [5] subdivision scheme that
generalizes bi-cubic uniform B-splines to surfaces of arbi-
trary topology because it has a simple tensor-product struc-
ture and the limit surface isC2 everywhere except at extraor-
dinary vertices of with valence 6= 4, where it is are at least
C1. The scheme is designed for control grids with quadri-
lateral connectivity, but our method can easily be applied to
other schemes with the same smoothness.

4. Robust Fitting Model
Given the surface samples P = {p1...pN} with asso-

ciated normals T = {t1...tN} and the boundary samples
P̄={p̄1, . . . , p̄m}, we fit a subdivision surfaceS={X(u)=∑n
i=1 Φi(u)vi | u ∈ TM} to these samples by solving the

constrained minimization problem:

min
S
E(S) s.t. ∂S 3 p̄j for j ≤ m, (2)

where E(S) = dist(S,P) + α · T (S,T) + β ·R(S),

α, β ≥ 0 are model parameters, dist(S,P) fits the surface
S to the points P, T (S,T) makes the tangent plane of S
orthogonal to the normals T, R(S) regularizes its control
mesh, and the constraints ensure that boundary points map
to surface boundaries. The subdivision surface S(V, F ) is
parametrized by its control mesh M = (V, F ).

Point FitLetDS(p) = mins∈S ‖s− p‖ be the Euclidean
distance between a point p and the surface S, then

dist(S,P) :=

N∑
j=1

DS(pj) =

N∑
j=1

min
uj∈TM

‖X(uj)− pj‖

Penalizing the distance between the surface and the point
samples, instead of the common squared distance, makes
our model robust to outliers and geometrically meaningful
that theManhattan distance associated to a robust `1 penalty.
The proposed penalty is less robust than M-estimators (e.g.
biweight loss), but is easier to optimize; we believe it of-
fers a better trade off between robustness and optimization
complexity for applications with a moderate number of out-
liers like shape analysis. The minimization in u1, . . . , uN
results from the parametric representation of the surface
S = X(TM) = {X(u) | u ∈ TM} and introduces a large
number of additional variables over which the objective
function is not convex. We will avoid optimizing explic-
itly the correspondence parameters u1, . . . , uN by using a
second-order approximation of the distance to a surface.

Tangent Fit T aligns the tangent space of the surface
with the direction orthogonal to the input normals with

T (S,T) =

N∑
j=1

|〈tj , ∂1Φ(uj)〉|+ |〈tj , ∂2Φ(uj)〉|,

where ∂iX(uj) the i-th basis of the tangent space TX(uj)S.
T is by design independent of the normal orientation because
estimating consistent orientations in noisy point clouds is
prone to fail. The `1-norm makes this term robust to errors
in the correspondence parameters u1...uN and outliers T.

Boundary Constraints For each point in the surface
boundary p̄j , the constraint p̄j ∈ ∂S ensures that it is
mapped to a point in the surface boundary. As points
on the surface boundary correspond to points X(ūj) with
ūj ∈ ∂TM, the constraints are equivalent to

p̄j = X(ūj) =

n∑
i=1

Φi(ūj)vi where ūj ∈ ∂TM j = 1, . . . ,m.

RegularizationThe regularizerR(S) penalizes the squared
distance between the vertices of the control mesh incident to
the same quad. This keeps the size and shape of quads reg-
ular and avoids skewed elements unstable in finite-element
(FE) computations. R(S) = ‖RV ‖2 is a simple quadratic
penalty described by a sparse matrix R that has a row for
each edge e = (i, j) in M0 with entries 1,−1 at the i, j-th
columns associated with the vertices vi and vj incident to e.

Color Representation When the input point cloud has
color, we estimate a color field h : S → R3 over the surface
parametrized with the same limit base functions by means



of the pullback h∗ : TM → R3. The coefficients H =
(h1, ..., hn) of the color field h∗(u) =

∑n
i=1 Φi(u)hi solve

min
h1,...,hn

N∑
j=1

min
uj∈TM

‖h∗(uj)− cj‖2 + α‖X(uj)− pj‖+ γ‖RH‖2,

where cj is the colors associated with pj and γ ≥ 0 a
model parameter. The term minuj

‖cj−h∗(uj)‖2 penalizes
the squared distance between cj and the color of the surface
pointX(uj) closest to pj , and ‖RH‖2 regularizes the color
fields H by penalizing color differences between adjacent
control vertices. We can estimate h∗ as we reconstruct the S
to exploit the joint terms ‖X(uj)− pj‖ in the optimization.

5. Initialization and Topology Estimation
Initialization is important because the optimization prob-

lem is not convex, the initial control mesh determines the
reachable local minima, and constrains the surface topology.

The variables of our optimization are the vertices and
facets of the control mesh M that parametrizes the surface.
To avoid solving a combinatorial problem, we fix the topol-
ogy of M, and thus the surface topology, and optimize the
location of the vertices V . The topology ofM is designed to
match the topology of the surface but have a fewer vertices.

If P are the vertices of an input high-resolution mesh
M, the topology of the surface and its boundary samples P̄
are encoded by M. We split the faces of M into triangles
and use quadratic edge-collapse [8] to reduce the number
of vertices while preserving topology. We then transform
the collapsed triangular mesh into a quad mesh by solving
a perfect matching problem that pairs triangles to create
quads [26]. For each edge e, let α1(e), . . . , α4(e) ∈ S1

be the angles of the quad that results from removing e and
η(e) ∈ S1 the angle between the normals of the triangles
incident to e. We favour rectangular quads and avoid skewed
elements (unstable to in FE computations) by setting the cost
of removing an edge to

c(e) =
1

4

4∑
i=1

(
αi(e)−

π

2

)2
+ tan(η(e))2

with∞ cost for edges that connect strongly bent triangles
(2η(e)>π) or create quads with straight or reflex angles. To
support the existence of a perfect matching, we partition tri-
angles with boundary corners or in meshes with odd number
of faces and solve the perfect matching problem with [15].

When the input is a point cloud, we use an implicit rep-
resentation to estimate the topology of the surface from the
points and only then extract a mesh. Estimating first the
topology with an implicit representation avoids handling
topology changes during fitting. We use Poisson recon-
struction [14] but other techniques work well. From this
implicit representation, we extract a triangular mesh with
marching cubes [20], determine the boundary samples P̄
from its boundary vertices, and create a compact quad mesh
with the collapse and blossom techniques used for meshes.

6. Efficient Optimization
Our optimization algorithmexploits the properties of sub-

division surfaces, namely, the compact support of the basis
functions and the ability to analytically evaluate its geome-
try, with a sequential quadratic program that is more efficient
than the gradient-based algorithms of [4, 11, 12]. We solve
(2) by solving a sequence of convex problems that approx-
imate the original energy E(S) around the current surface
estimate St with the constrained least-squares problem

vt+1 ← min
v

v>
(
Q>v − b

)
s.t. Cv = P̄ (3)

The KKT conditions of (3) result in the linear system(
Q C>

C 0

)
[ vλ ] =

[
b
P̄

]
that we can solve efficiently with an iterative linear solver
warm-started with the solution from iteration t because the
matrix is sparse as a result of the compact support of the sub-
division basis. We explain how to derive the approximation
(3) from the surface geometry without color for simplicity.

We follow aMajorize-Minimize (MM) principle to mini-
mizeE(S) by iterating two steps until convergence. The first
step of iteration t finds a majorizer of the objective function
E(S|St) ≥ E(S) that coincides withE at St. In particular,
our majorizer results from applying the inequality

|d|q ≤ q

2
|d0|q−2d2 + (1− q

2
)|d0|q ∀d0 6= 0, q ∈ [1, 2]

with q = 1 for the point and tangent fit terms, that is,

E(S|St) =

n∑
j=1

wt
jDS(pj)

2 +

2∑
i=1

αt
ij〈tj , ∂iΦ(uj)〉2 + βR(S).

The second step of iteration t drives the value of the original
function downwards byminimizing this upper envelop. This
defines a weighted least-squares problem where the weights
wtj and αtij are determined by the MM principle. To con-
vexify the problem, we approximateDS(·)2 with a quadratic
function that parametrizes the squared distance to a surface
in terms of its geometry as follows:

D2
S(p) ≈ (x−p)>

[
d · τ1τ>1
d+ ρ1

+
d · τ2τ>2
d+ ρ2

+ νν>
]

(x−p), (4)

where x is a point on the surface S close to p (but not
necessarily the projection of p onto S), d := ‖x− p‖ is
the distance from x to this point, and ρi, τi, ν are the prin-
cipal curvature radii, the principal curvature directions and
the normal to the surface at p. The approximation, adapted
from [25], coincides with the second-order Taylor approxi-
mation of the squared distance within the radius of curvature
of the surface at x, where it can be relaxed into a posi-
tive definite quadratic form by taking the absolute values of
ρ1, ρ2. The matrix Q is obtained by introducing the lin-
ear parametrization of the surface x =

∑n
i=1 Φi(u)vi into

distance approximation (4) and the tangent terms.



Incorporating this approximation into the upper envelop
corresponds to using a quasi-Newton algorithm optimizing
jointly the v1...vn and u1, ..., uN [19, 30] but let us work
with approximate correspondences. We update the surface
parameters u1, . . . , uN where we approximate eachD2

S(pj)
by sampling the current surface uniformly and creating aKd-
tree to find the sample closest to each pj . This strategy also
determines the parameters ū1, . . . , ūm ∈ ∂TM associated
with boundary points p̄1, . . . , p̄j to make the constraints
p̄j =

∑n
i=1 Φi(ūj)vi linear in the optimization variables v

and define matrix C.
Our algorithm avoids the slow convergence of coordinate

descent and the large optimization problem of LM solvers [4,
11,12]. An iteration of our algorithm solves a 3n×3n linear
systemwhile anLM iteration solves a (3n+3N)×(3n+3N) one
with N � n. Comparing the convergence rate of LM and
MM solvers for non-convex problems offers limited insight
because the algorithms converge to different solutions and
the rates are computed w.r.t. different optima.

7. Smooth Shape Analysis
We explain how to do smooth shape analysis with a sub-

division surface. We focus on techniques invariant to isome-
tries based on the Laplace-Beltrami operator.

Laplace-BeltramiGiven a smooth shapeS, the Laplace-
Beltrami-Operator ∆ maps a Sobolev functions g ∈ H1(S)
to a continuous function ∆(g) : S → R. Stokes’ theorem∫
S

∆g · h =
∫
S
〈∇g,∇h〉 let us discretize ∆ in the space

H1
n(S) spanned by Sobolev functions Φ1...Φn ∈ H1(S) in

terms of mass and stiffness matrices D0, D1 ∈ Rn×n

(D0)ij =

∫
S

Φi · Φj dx (D1)ij =

∫
S

〈∇Φi,∇Φj〉dx.

that compute the scalar product of base functions and their
tangent fields in S. The discrete Laplace-Beltrami operator
in H1

n(S) is the linear operator D2 := D−1
0 D1 that has a

non-negative spectrum and whose eigenvectors discretizes
the eigenfunctions of ∆ in H1

n(S). If v ∈ Rn is a D2-
eigenvector with eigenvalue λ, then gv =

∑n
i=1 viΦi is a

∆-eigenfunction with eigenvalue λ in H1
n(S).

To particularize this construction to subdivision surfaces
S, we must parametrize Sobolev functions over the surface
g ∈ H1(S) by n scalar values g1...gn ∈ R with a mapping

g : S →R (5)
n∑

i=1

Φi(u, f) · vi 7→
n∑

i=1

Φi(u, f) · gi (6)

that depends on each basis function Φi twice, once to de-
scribe the function g and once to describe the function do-
main S. As a result, the gradient of a surface function is

∇g(X(u)) = JX(u)G−1(u)

n∑
i=1

∇Φi(u)gi,

where JX(u) is the Jacobian of the surface mapping X
with respect to u, and G(u) = JX(u)>JX(u) is the first
fundamental form of S at surface point X(u). We compute
the surface integrals in the mass and stiffness matrices by
pulling-back the integrand to the quad mesh and using 3×3
Gaussian quadrature over each quad �, that is∫

S

g(s) ds =
∑
f∈F

∫
�
g ◦X(u)

√
detG(u) du.

Geodesic Distances To compute the geodesic distance χ to
a surface point S(u0) we need to solve the Eikonal equation
‖∇χ‖ = 1 subject to boundary conditions χ(u0) = 0. As
this nonlinear PDE is expensive to solve, [6] computes an
approximate geodesic by first computing a function f ∈
H1(S) whose gradient is parallel to∇χ, approximating∇χ
by the unit vector field X = −∇f//‖∇f‖, and finding the
minimizer of

∫
S
‖∇χ−X‖2. As all the computations only

require the Heat kernel∆, we can use this method to directly
approximate geodesics with the Laplace-Beltrami-Operator.

8. Experiments
We use point clouds acquired with a range sensor in a

realistic setting for shape analysis, with partial and full object
scans obtained by estimating the camera motion with off-
the-shelf software and projecting the depth into a reference
frame. Points within a bounding box are added to the point
cloud that has the levels of noise, holes, and misalignment
characteristic of computer vision systems. We also include
experiments fitting 72 artifact-free high-resolution meshes
from TOSCA for quantitative comparisons. TOSCA has
high and low-resolution versions of meshes that let us to
compare our subdivision representation to high and low-
resolution triangular meshes of a shape, their descriptors,
geodesics, and matchings. In our experiments, we coarsely
choose the model parameters for each shape and method
and answer the following questions: Our technical report [7]
includes additional experiments.

How does our subdivision surface fit compare to tri-
angular meshes? Our technique fits a surface to a noisy
pointcloud as accurately as the mesh obtained by Poisson
reconstruction [14] with 2% of its vertices (Fig. 1, 3, 9 ).

How does our fitting technique compare to subdivi-
sion state-of-the art? We fit a subdivision surface with
1000-2000 control vertices to high-resolution meshes and
measure the distance (Table 1) between the mesh and the
fitted subdivision surfaces with our method and the tech-
niques [4, 12, 22, 29] closer it. In terms of accuracy, our
model is more robust to noise than the least-squares model
of [22] and avoids the artifacts caused by noise and outliers
(Fig. 3 and 10). It also fits better small curved structures
in clean meshes (Fig. 5) because our second-order distance
approximation incorporates curvature. In terms of opti-
mization, our algorithm is an order of magnitude faster and



Mesh 3,400 vertices Mesh 27,984 vertices Subdiv. Surf. 1700 vertices wave-kernel signatures (WKS)
Figure 2. 12th ∆-eigenfunction and WKS computed at the point in red with fine and coarse triangular meshes (blue and red lines) and a
subdivision surface (yellow). The WKS of the subdivision surface and fine mesh are similar, the coarse mesh merges high-frequency peaks.

object mesh by [14] collapsed mesh [22] SDS our SDS
110 K points |V | = 20K |V | = 250 |V | = 250 |V | = 250

pointcloud mesh by [14] collapsed mesh [22] SDS our SDS
140 K points |V | = 12K |V | = 250 |V | = 250 |V | = 250

Figure 3. Surfaces reconstructed from Kinect points with Poisson method [14] and subdi-
vision surface (SDS) methods. Our technique reconstructs the surface with an accuracy
comparable to [14] high-resolution mesh with a parametrization that has 2% of the ver-
tices (V ). An edge-collapsed mesh of comparable size looses all small-scale details. The
subdivision surface of [22] shrinks the statue’s V-shaped torso, oversmooths its hands, and
produces artifacts at the base of the bottle where samples are irregularly spaced and overlap.

pointcloud [22] subdiv. surf.

LM solver our constrained model
Figure 4. Subdiv. surfaces with 500
control vertices fitted to a partial Kinect
scan (260K points). Our model constrains
the boundaries of the surface to match the
boundary points, while the unconstrained
models [22] and the LM [4, 11, 12, 29]
shrink the boundaries by regularization.

less sensitive to local minima than using the LM solver ad-
vocated by [4, 11, 12, 29] to minimize the MM envelope.
In particular, our surfaces evolve further from initialization
and reproduce the small-scale details of the input meshes
(Figs. 5 and 10). Our technique is moderately slower than
the quadratic model of [22] due to the robust energy. Table
1 show the effects of each term in our energy model.

Are shape descriptors obtained with subdivision dis-
criminative? The wave kernel signature (WKS) [1] assigns
to each point x ∈ S a function wx that depends on the value
of the ∆-eigenfunctions at x. Figure 2 compares WKS ob-
tainedwith different surface discretizations: a fine triangular
mesh, a coarse triangular mesh, and our subdivision surface.
TheWKS of the finemesh presents two frequency peaks that
are preserved in the WKS of subdivision, while the WKS
from the coarse mesh looses the high-frequency details.

Table 1. Average run time and Hausdorff distance (as ‰of the
bounding box) between a 1K-vertex subdivision surface and high-
resolution input meshes. Columns 1–3, 6–8 show how each addi-
tional term in the energy slows the optimization but improves the
accuracy (D2 penalizes the squared distance instead of D).

execution time (s) Hausdorff Distance
mesh D2 α = 0 our [22] LM D2 α = 0 our [22] LM
cat 27 37 44 17 384 0.28 0.26 0.24 0.32 0.37
centaur 16 18 24 8 228 0.52 0.47 0.45 0.53 0.61
david 58 51 82 36 607 0.37 0.34 0.33 0.38 0.56
dog 24 28 40 15 304 0.39 0.36 0.35 0.44 0.51
gorilla 38 41 57 25 513 0.71 0.57 0.57 0.70 0.99
horse 21 25 34 12 246 0.36 0.34 0.34 0.40 0.65
michael58 59 89 35 535 0.43 0.38 0.36 0.43 0.57
victoria 44 505 59 26 423 0.33 0.29 0.29 0.35 0.51
wolf 6 9 10 6 65 0.42 0.43 0.41 0.47 0.53

Can we do shape matching with subdivision repre-
sentations? Functional maps [24] formulate the problem



input meshes 15–30K vertices

[22] model and solver

our robust model, LM solver

our robust model, our MM solver

Figure 5. Comparison of subdivision surface techniques. All the
subdivision surfaces have 1700 control vertices and are visualized
by refiningM0 3 times zooming into the detailed surface face.

Figure 6. Fitted colored subdiv. surfaces by 2K control parameters.

of matching points in two shapes as matching smooth func-
tions parametrized by ∆-eigenfunctions over them. Fig. 8
shows the computed matching with respect to two differ-
ent shape representations: a fine mesh with 27894 vertices
and a subdivision surface with 1700 control vertices. The
matching results are comparable (small accuracy loss at the
tails of some cats) even though the surface representation
is 10 times smaller. In Fig. 8 we color the template shape
with a map determined by the spatial coordinates of every
point and transfer this color map to the target shape with the
estimated matching. Matching with a coarse mesh fails.

Are geodesics computed with subdivision accurate?
Fig. 1 and 7 compare geodesics computed by the Heat

fine mesh coarse mesh subdivision surface
|V | = 30K |V | = 2700 |V | = 1700K

geodesic g1 geodesic g2 geodesic g2

cos(5g1) cos(5g2) cos(5g3)

cos(30g1) cos(30g2) cos(30g3)
Figure 7. Approximate geodesics [6] computed with different sur-
face representations: a high-resolution mesh, a low-resolution
mesh, and our subdivision surface. The level lines of the geodesics
g are visualized as cos($g) to show that our subdivision surface
is comparable to the fine mesh and can represent geodesics at both
low and high resolution with a parametrization with 5% of vertices
(V ). In contrast, the low-resolution mesh looses all the small scale
details of the surface and high-frequency geodesic information.

method [6] with different surface representations. As
ground-truth proxy, we use a high-resolution mesh ob-
tained by the Poisson reconstruction [14] and compare it
to geodesics computed over low-resolution meshes and our
subdivision representation. The geodesics computed with
subdivision are comparable to ones computed with high-
resolution meshes, while the geodesics of low-resolution
meshes cannot represent the high-frequency information.

9. Conclusions
We have presented a method to fit a subdivision surface

to low-level surface representations and develop standard
shape analysis with it. Our fitting model is robust to noise
and outliers and the resulting subdivision surfaces represent
smooth shapes at high accuracy with a fraction of the vari-
ables used with triangular meshes. Our experiments show
how the smoothness of the representation reduces the size
of the Laplace-Beltrami operator without significant loss of
accuracy and let us compute shape descriptors, approximate
geodesics, and shape matches compactly.
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Figure 8. Shapematching by functionalmaps [24] with subdivision
representations. The color of the target shape (left) is transferred to
the matched shape (right) with the estimated functional mapping.

pointcloud [14] mesh
589K points 77K vertices

collapsed mesh our subdiv. surface
2K vertices 2K vertices

Figure 9. Surfaces reconstructed from a pointcloud with the Pois-
son surface reconstruction method [14] and with our subdivision
surface technique. The accuracy of our subdivision surface is
comparable to the high-resolution mesh but has 5% of the mesh
vertices. An edge-collapsed mesh of comparable size is unable to
represent smooth textures and fine details (belly bottom).

120K points 300K points

triangular meshes reconstructed by [14], 20K vertices

subdiv. surface obtained by [22]

subdiv. surface fitted with our model and LM solver

subdiv. surface fitted with our model and our MM solver
Figure 10. Reconstructed surfaces from Kinect pointclouds by the
Poissonmethod [14] and different subdivision surfaces of 2000 control
vertices. Our model reconstructs the surface with an accuracy compa-
rable to the Poissonmeshwith a parametrization 20 times smaller. The
least-squares model [22] shrinks the dancer’s arms and oversmooths
the owls neck, while the LM solver [4,11,12,29] optimizes our model
to a lower accuracy than our MM algorithm (owls wings).
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